用户名: 密码: 验证码:
90°圆截面弯管内稠油流动特性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation on flow characteristics of heavy oil through circular-sectioned 90° bends
  • 作者:顾效源 ; 潘福奎 ; 汪文杰 ; 张黎明
  • 英文作者:Xiaoyuan GU;Fukui PAN;Wenjie WANG;Liming ZHANG;School of Petroleum Engineering, China University of Petroleum (East China);
  • 关键词:圆截面弯管 ; 稠油 ; 流体力学性能 ; 涡旋
  • 英文关键词:circular-sectioned be nd;;heavy oil;;flow characteristics;;vortex
  • 中文刊名:过程工程学报
  • 英文刊名:The Chinese Journal of Process Engineering
  • 机构:中国石油大学(华东)石油工程学院;
  • 出版日期:2018-07-13 11:32
  • 出版单位:过程工程学报
  • 年:2019
  • 期:01
  • 语种:中文;
  • 页:90-97
  • 页数:8
  • CN:11-4541/TQ
  • ISSN:1009-606X
  • 分类号:TE832
摘要
采用计算流体力学三维层流模型模拟,研究了温度50~75℃、雷诺数Re=300~800、弯管内径D=50.7~131.7 mm、弯径比B=0.75~3.0条件下稠油在90°弯管内的阻力特性,分析了弯管局域阻力系数波动的机理。结果表明,随温度升高、入口雷诺数下降、弯管直径增加,局域阻力系数提高;在弯管0~15°范围内阻力下降,原因是弯管内形成双纵向涡,75°到弯管后0.5D范围内阻力下降,原因是弯管内形成4个纵向涡;弯管的弯径比对局域流动阻力影响很大,B=0.75时相邻截面最大落差达B=3.0时的28.35倍,但管道进出口阻力仅为1.68倍,原因是弯径比B≤1.0时,弯管后1.0D范围内侧形成了局域低压区,对应位置出现流向涡旋,同时弯管后0.5D截面稠油剪切速率达到峰值。
        The flow of heavy oil in circular-sectioned 90° bends was investigated. The local hydrodynamic performance was affected by heavy oil flow parameters and structure parameters of bend. Computational fluid dynamics(CFD) was used to numerical calculate the three-dimensional laminar flow for circular-sectioned 90° bends, and heavy oil was used as the research medium. The resistance of heavy oil was exported at temperature 50 ~70℃, Reynolds number 300~800, the inner diameter of pipe D=50.7~131.7 mm, bending ratio B=0.75~3.0. The mechanism of the local drag coefficient in bend wasanalyzed. The results showed that the local drag coefficient increased with the increase of temperature, the inlet Reynolds number decreased and D increased. The resistance decreased in the range of 0~15° in the bend because of the formation of double longitudinal vortices, and the scope of resistance decreased from 75° in the bend to 0.5 D behind the bend because of the formation of four longitudinal vortex bend. The effect of local flow resistance was greater by bending ratio than the other. The maximum value of the local drag coefficient when B=0.75 was 28.35 times of that of B=3.0, however, the pipeline resistance between inlet and outlet was only 1.68 times. The reason was that there was a local low pressure region at 1.0 D behind the bend when the bending ratio B≤1.0. Meanwhile, there was a flow vortex, and the peak of shear rate located 0.5 D behind the bend. The conclusions can provide technical support, and the theoretical study about the secondary flow characteristics of heavy oil in the pipe can provide reference data for the design of heavy oil pipeline. The initial state parameters of heavy oil can be predicted in the engineering practice.
引文
[1]王兰花,孙雁伯,李刚.稠油及特稠油长输管道工艺参数分析方法[J].油气田地面工程,2017,36(5):41-43.Wang L H,Sun Y B,Li G.Analytic method for process parameters of viscous crude and extremely viscous crude oil transmission pipelines[J].Oil-Gas Field Surface Engineering,2017,36(5):41-43.
    [2]万宇飞,邓道明,刘霞,等.稠油掺稀管道输送工艺特性[J].化工进展,2014,33(9):2293-2297.Wan Y F,Deng D M,Liu X,et al.Thermo-hydraulic features of a diluted heavy crude pipeline[J].Chemical Industry and Engineering Progress,2014,33(9):2293-2297.
    [3]Cheng C,Boger D V,Nguyen Q D.Influence of thermal history on the waxy structure of statically cooled waxy crude oil[J].SPEJournal,2000,5(2):148-157.
    [4]湛含辉,朱辉,陈津端,等.90°弯管内二次流(迪恩涡)的数值模拟[J].锅炉技术,2010,41(4):1-5.Zhan H H,Zhu H,Chen J D,et al.Numerical simulation of secondary flow(dean vortices)in 90°curved tube[J].Boiler Technology,2010,41(4):1-5.
    [5]Munekata M,Terasawa T,Yoshikawa H,et,al.Development of secondary flow in a transition state of surfactant solution flow in a square-sectioned 90°bend[J].The Japan Society of Mechanical Engineers,2010,7(B):1019-1027.
    [6]Liepsch D,Poll A.LDA and pressure measurements in a tube with a90°bend using shear thinning and shear thickening additives in water[M]//Multiphase Flow.Amsterdam:Elsevier Science,1995:151-165.
    [7]Xia X L,Qiang H F.Numerical solution on flow property of a shearthinning gel propellant in a 90°pipe bend[J].Advanced Materials Research,2012,468/471:2274-2281.
    [8]陈良勇,段钰锋,刘猛,等.具有壁面滑移特性的水煤浆流经局部管件的阻力特性[J].化工学报,2009,60(12):2981-2989.Chen L Y,Duan Y F,Liu M,et al.Friction losses across pipe elements for coal-water slurries with wall-slip behavior[J].CIESCJournal,2009,60(12):2981-2989.
    [9]中国石油天然气管道工程有限公司.输油管道工程设计规范:GB 50253-2014[S].北京:中国计划出版社,2014:20-32.China Petroleum Pipeline Engineering Corporation.Code for design of oil transportation pipeline engineering:GB 50253-2014[S].Beijing:Planning Press of China,2014:20-32.
    [10]齐超,于欢,吴玉国,等.辽河油田稠油流变特性实验研究[J].辽宁石油化工大学学报,2016,36(5):29-32.Qi C,Yu H,Wu Y G,et al.Experimental study on the rheological properties of heavy oil in Liaohe oil-field[J].Journal of Liaoning Shihua University,2016,36(5):29-32.
    [11]张金亮,王为民,申龙涉,等.辽河油田超稠油流变特性的实验研究[J].油气田地面工程,2006,25(7):11-15.Zhang J L,Wang W M,Shen L S,et al.Experimental study on the rheological properties of ultra-heavy oil in Liaohe oil-field[J].Oil-Gas Field Surface Engineering,2006,25(7):11-15.
    [12]Metzner A B,Reed J C.Flow of non-Newtonian fluids-correlation of the laminar,transition,turbulent flow regions[J].AIChE Journal,1955,1(4):434-440.
    [13]Güzel B,Frigaard I,Martinez D M.Predicting laminar-turbulent transition in poiseuille pipe flow for non-Newtonian fluids[J].Chemical Engineering Science,2009,64(2):254-264.
    [14]刘崇建,刘孝良,柳世杰.非牛顿流体流态判别方法的研究[J].天然气工业,2001,21(4):49-52.Liu C J,Liu X L,Liu S J.A study of the flow pattern discriminant method for non-Newtonian fluid[J].Natural Gas Industry,2001,21(4):49-52.
    [15]袁世伟.幂律非牛顿流体流动的数值计算与实验研究[D].上海:华东理工大学,2014:7-23.Yuan S W.Numerical simulation and experimental study of powerlaw fluid[D].Shanghai:East China University of Science and Technology,2014:7-23.
    [16]季楚凌.稠油管道90°弯管流场及应力分析[J].当代化工,2015,44(2):401-404.Ji C L.Analysis on flow field and stress of 90-degree bend in heavy oil transmission pipeline[J].Contemporary Chemical Industry,2015,44(2):401-404.
    [17]郑永刚,谢翠丽,姚泽西.非牛顿流体在圆管中层流-紊流分层流动规律[J].四川大学学报(工程科学版),2000,32(3):1-4.Zheng Y G,Xie C L,Yao Z X.Laws of the laminar-turbulent stratified flow for non-Newtonian fluids in pipe[J].Journal of Sichuan University(Engineering Science Edition),2000,32(3):1-4.
    [18]贺成才.幂律-牛顿流体圆管分层层流的数值模拟[J].天然气与石油,2003,21(1):18-21.He C C.Digital simulations of stratified flow in power-law Newton fluid pipe[J].Natural Gas and Oil,2003,21(1):18-21.
    [19]Biberg D.A mathematical model for two-phase stratified turbulent duct flow[J].Multiphase Science&Technology,2007,19(1):1-48.
    [20]Dennis S C R,Michael N G.Dual solutions for steady laminar flow through a curved tube[J].Quarterly Journal of Mechanics and Applied Mathematics,1982,35(3):305-324.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700