用户名: 密码: 验证码:
钼(或铬,钒)原子替位掺杂对双相γ-TiAl/α_2-Ti_3Al界面的能量、延性和电子性质的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Mo(or Cr, V) substitution doping on energy,ductility and electronic properties of dual-phase γ-TiAl/α_2-Ti_3Al interface
  • 作者:宋庆功 ; 顾威风 ; 甄丹丹 ; 郭艳蕊 ; 胡雪兰
  • 英文作者:SONG Qing-gong;GU Wei-feng;ZHEN Dan-dan;GUO Yan-rui;HU Xue-lan;Institute of Low Dimensional Materials and Technology, College of Science, Civil Aviation University of China;Sino-European Institute of Aviation Engineering, Civil Aviation University of China;
  • 关键词:双相γ-TiAl/α_2-Ti_3Al界面 ; 能量性质 ; 延性 ; 电子性质 ; 第一性原理
  • 英文关键词:dual-phase γ-TiAl/α_2-Ti_3Al interface;;energy property;;ductility;;electronic property;;first-principle
  • 中文刊名:中国有色金属学报
  • 英文刊名:The Chinese Journal of Nonferrous Metals
  • 机构:中国民航大学理学院低维材料与技术研究所;中国民航大学中欧航空工程师学院;
  • 出版日期:2019-02-15
  • 出版单位:中国有色金属学报
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金资助项目(51201181);; 中央高校基本科研业务费专项资助项目(3122016L012)~~
  • 语种:中文;
  • 页:154-163
  • 页数:10
  • CN:43-1238/TG
  • ISSN:1004-0609
  • 分类号:TG146.23
摘要
采用基于密度泛函理论计算研究了钼(或铬,钒)原子替位掺杂双相γ-TiAl/α_2-Ti_3Al界面体系的平均形成能、断裂功、电子结构等。结果显示:各个掺杂体系的总能量和平均形成能均为负值,表明它们可以由实验制备并能稳定存在。对代表性体系的断裂功和态密度分析表明,体系Mo-S_(a5) (或Cr-S_(a5))的结合强度减弱,同时体系Mo-S_(a5)的Mo-d和Ti-d电子态密度增加、相互作用增强,而Ti-d和Al-p轨道杂化键强度降低,位错运动的阻力减少,有利于改善Ti Al合金材料的延性。对杂质原子所在(001)面电荷密度和布居数的分析发现,Mo(或V)的掺入会引起电子云在杂质原子周围的聚集效应,形成结合强度稍高的区域,该区域与周围其他区域结合的各向异性程度下降。这正是此类TiAl合金延性改善的内因。
        The average formation energies, Griffith fracture works and electronic structures of Mo(or Cr, V) doping ofγ-TiAl/α_2-Ti_3 Al interfacial systems were calculated with density functional theory. The results indicate that these systems possess energy stability and can be prepared by experiments and exist stably. The Griffith fracture work and density of the representative system show that the bonding strength of Mo-S_(a5)(or Cr-S_(a5)) is weakened and the densities of state of Mo-d and Ti-d electrons of Mo-S_(a5) are increased. The charge density map of the(001) plane passing through impurity atom and populations of the doping system show that, there is an electron cloud aggregation effect surrounding the dopant caused by the doping of Mo(or V) atom, which forms a region with a slightly higher bonding strength. As a result, the anisotropy degree of the combination of this region is reduced, which is the internal reason of the improved ductility for TiAl alloys.
引文
[1]CLEMENS H,MAYER S.Design,processing,microstructure,properties,and applications of advanced intermetallic TiAl alloys[J].Advanced Engineering Materials,2013,15(4):191-215.
    [2]BEWLAY B P,NAG S,SUZUKI A,WEIMER M J.TiAl alloys in commercial aircraft engines[J].Materials at High Temperatures,2016,33(4/5):549-559.
    [3]WU X H.Review of alloy and process development of TiAl alloys[J].Intermetallics,2006,14(10/11):1114-1122.
    [4]KANANI M,HARTMAIER A,JANISCH R.Stacking fault based analysis of shear mechanisms at interfaces in lamellar TiAl alloys[J].Acta Materialia,2016,106:208-218.
    [5]SHU S L,TONG C Z,QIU F,ZOU Q,JING Q C.Effects of ternary elements on the ductility of TiAl[J].The Canadian Journal of Metallurgy and Materials Science,2016,55(2):156-160.
    [6]张建伟,李世琼,梁晓波,程云君.Ti3A1和Ti2A1Nb基合金的研究与应用[J].中国有色金属学报,2010,20(1):336-341.ZHANG Jian-wei,LI Shi-qiong,LIANG Xiao-bo,CHENGYun-jun.Research and application of Ti3A1 and Ti2A1Nb based alloys[J].The Chinese Journal of Nonferrous Metals,2010,20(1):336-341.
    [7]SASTRY S M L,LIPSITT H A.Fatigue deformation of Ti Al base alloys[J].Metallurgical and Materials Transactions A,1997,8(2):299-308.
    [8]OEHRING M,APPEL F,ENNIS P J,WAGNER R,A TEMstudy of deformation processes and microstructural changes during long-term tension creep of a two-phaseγ-titanium aluminide alloy[J].Intermetallics,1999,7(3/4):335-345.
    [9]MANDA P,PATHAK A,MUKHOPADHYAY A,CHAKKINGAL U,SINGH A K.Ti-5Al-5Mo-5V-3Cr and similar Mo equivalent alloys:First principles calculations and experimental investigations[J].Journal of Applied Research and Technology,2017,15:21-26.
    [10]XI Y J,LIU Y J,WANG Z X,LIU J B.Oxidation and electrochemical corrosion performance of Ti3Al alloy with TiAl coating[J].Anti-Corrosion Methods and Materials,2010,57(1):13-17.
    [11]杨锐.钛铝金属间化合物的进展与挑战[J].金属学报,2015,51(2):129-147.YANG Rui.Advances and challenges of TiAl base alloys[J].Acta Metallurgica Sinica,2015,51(2):129-147.
    [12]HU H,WU X Z,WANG R,LI W G,LIU Q.Phase stability,mechanical properties and electronic structure of TiAl alloying with W,Mo,Sc and Yb:First-principles study[J].Journal of Alloys and Compounds,2016,658:689-696.
    [13]宋庆功,杨宝宝,赵俊普,秦国顺,郭艳蕊,胡雪兰.Zr和(或)Mn替位掺杂γ-TiAl基合金的延性与电子性质[J].中国有色金属学报,2016,26(11):2309-2318.SONG Qing-gong,YANG Bao-bao,ZHAO Jun-pu,QINGuo-shun,GUO Yan-rui,HU Xun-lan.Investigations on ductibility and electronic property of Zr and(or)Mn dopedγ-TiAl based alloys[J].The Chinese Journal of Nonferrous Metals,2016,26(11):2309-2318.
    [14]陈玉勇,韩建超,肖树龙,徐丽娟,田竞.稀土Y在γ-TiAl基合金及其精密热成形中应用的研究进展[J].中国有色金属学报,2014,24(5):1241-1251.CHEN Yu-yong,HAN Jian-chao,XIAO Shu-long,XU Li-juan,TIAN Jing.Research progress of rare earth yttrium application inγ-TiAI based alloy and precision thermal forming[J].The Chinese Journal of Nonferrous Metals,2014,24(5):1241-1251.
    [15]WANG L,SHANG J X,WANG F H,ZHANG Y.First principles study ofα2-Ti3Al(0001)surface and/γ-TiAl(111)/α2-Ti3Al(0001)interfaces[J].Applied Surface Science,2013,276:198-202.
    [16]ZGHAL S,NAKA S,COURET A,A quantitative TEM analysis of the lamellar microstructure in TiAl based alloys[J].Acta Materialia,1997,45(7):3005-3015.
    [17]祝莹莹,邓文,孙顺平,江海峰,黄宇阳,曹名洲,熊良钺.用正电子湮没技术研究Cr和Nb对TiAl合金中缺陷和d-d电子相互作用的影响[J].稀有金属材料与工程,2009,38(2):271-274.ZHU Ying-ying,DENG Wen,SUN Shun-ping,JIANG Hai-feng,HUANG Yu-yang,CAO Ming-zhou,XIONG Liang-yue.Influence of Cr and Nb on defects and d-d electron interactions in TiAl alloys researched by positron annihilation techniques[J].Rare Metal Materials and Engineering,2009,38(2):271-274.
    [18]熊翔,黄伯云,雷长明,吕海波.添加铬元素对TiAl合金室温延性和微观结构的影响[J].中南矿冶学院学报,1992,23(5):560-564.XIONG Xiang,HUANG Bai-yun,LEI Chang-ming,LüHai-bo.Effect of Cr addition on room-temperature ductility and microstructure of TiAl alloy[J].Journal of Central South Institute of Mining and Metallurgy,1992,23(5):560-564.
    [19]王海燕,胡前库,杨文朋,李旭升.金属元素掺杂对TiAl合金力学性能的影响[J].物理学报,2016,65(7):1-9.WANG Hai-yan,HU Qian-ku,YANG Wen-peng,LI Xu-Sheng.Influence of metal element doping on the mechanical properties of TiAl alloy[J].Acta Physica Sinica,2016,65(7):1-9.
    [20]魏强,王硕.第三组元Cr,Mo,W掺杂对钛铝化合物脆性的影响[J].金属功能材料,2014,21(2):26-31.WEI Qing,WANG Shuo.Effect on brittle of titanium aluminum compound by doping Cr,Mo,W additions[J].Metallic Functional Materials,2014,21(2):26-31.
    [21]党宏丽,王崇愚,于涛.γ-TiAl中Nb和Mo合金化效应的第一性原理研究[J].物理学报,2007,56(5):2838-2844.DANG Hong-li,WANG Chong-yu,YU Tao.First-principles investigation on alloying effect of Nb and Mo inγ-TiAl[J].Acta Physica Sinica,2007,56(5):2838-2844.
    [22]MORINAGA M,SAITO J,YUKAWA N,ADACHI H.Electronic effect on the ductility of alloyed TiAl compound[J].Acta Metallurgica et Materialia,1990,38(1):25-29.
    [23]HAO Y L,XU D S,CUI Y Y,YANG R,LI D.The site occupancies of alloying elements in TiAl and Ti3Al alloys[J].Acta Materialia,1999,47(4):1129-1139.
    [24]WEI Y,ZHANG Y,LU G H,XU H B.Effects of transition metals in a binary-phase TiAl-Ti3Al alloy:From site occupancy,interfacial energetics to mechanical properties[J].Intermetallics,2012,31:105-113.
    [25]屈华,刘伟东,张坤,刘志林.Ti3Al基合金(0001)α2//(110)β界面价电子结构分析[J].稀有金属材料与工程,2005,34(10):1569-1573.QU Hua,LIU Wei-dong,ZHANG Kun,LIU Zhi-lin.Study on the valence electron structure of(0001)α2//(110)βinterface in Ti3Al-based alloys[J].Rare Metal Materials and Engineering,2005,34(10):1569-1573.
    [26]刘伟东,屈华,刘志林.双相TiAl合金α2/γ界面电子结构计算与增韧机制分析[J].稀有金属材料与工程,2005,34(2):199-204.LIU Wei-dong,QU Hua,LIU Zhi-lin.Calculation of valence electron structures ofα2/γinterface and toughening mechanism in two-phase TiAl-alloy[J].Rare metal materials and engineering,2005,34(2):199-204.
    [27]WEI Y,ZHANG Y,ZHOU H B,LU G H,XU H B.First-principles investigation on shear deformation of a TiAl/Ti3Al interface and effects of oxygen[J].Intermetallics,2012,22:41-46.
    [28]FISCHER F D,WAITZ T,SCHEU C,CHA L,DEHM G,ANTRETTER T,CLEMENS H.Study of nanometer-scaled lamellar microstructure in a Ti-45Al-7.5Nb alloy-experiments and modeling[J].Intermetallics,2010,18:509-517.
    [29]KOIZUMI Y,FUJITA T,MINAMINO Y,HATA S.Effects of plastic deformation on lamellar structure formation in Ti-39 at.%Al single crystals[J].Acta Materialia,2010,58:1104-1115.
    [30]武佳佳,马万坤,焦芬,覃文庆.Cu、Ni掺杂FeS2电子结构与光学性质的第一性原理计算[J].中国有色金属学报,2017,27(3):605-612.WU Jia-jia,MA Wan-kun,JIAO Fen,QIN Wen-qing.First principle calculation of electronic structures and optical properties of copper and nickel doped FeS2[J].The Chinese Journal of Nonferrous Metals,2017,27(3):605-612.
    [31]刘松,王寅岗.氢在钛晶体中扩散行为的第一性原理[J].中国有色金属学报,2015,25(11):3100-3106.LIU Song,WANG Yin-gang.First-principles of hydrogen diffusion mechanism in titanium crystals[J].The Chinese Journal of Nonferrous Metals,2015,25(11):3100-3106.
    [32]陶鹏程,黄燕,周孝好,陈效双,陆卫.掺杂对金属-Mo S2界面性质调制的第一性原理研究[J].物理学报,2017,66(11):11820.TAO Peng-cheng,HUANG Yan,ZHOU Xiao-hao,CHENXiao-shuang,LU Wei.First principles investigation of the tuning in metal-MoS2 interface induced by doping[J].Acta Physica Sinica,2017,66(11):11820/1-11820/8.
    [33]王小宏,张彩丽,户秀萍,韩培德.Al、Zn对Mg-Li相界合金化效应的第一性原理研究[J].稀有金属材料与工程,2014,43(7):1661-1665.WANG Xiao-hong,ZHANG Cai-li,HU Xiu-ping,HAN Pei-de.First principle study on alloying effect of Al and Zn doping on Mg-Li phase interface[J].Rare Metal Materials and Engineering,2014,43(7):1661-1665.
    [34]HUANG X M,ZHU L L,CAI G M,LIU H S,JIN Z P.Experimental investigation of phase equilibria in the Ti-Al-Mo ternary system[J].Journal of Materials Science,2017,52:2270-2284.
    [35]宋庆功,赵俊普,顾威风,甄丹丹,郭艳蕊,李泽朋.基于密度泛函理论的La掺杂γ-TiAl体系结构延性与电子性质[J].物理学报,2017,66(6):066103.SONG Qing-gong,ZHAO Jun-pu,GU Wei-feng,ZHENDan-dan,GUO Yan-rui,LI Ze-peng.Ductile and electronic properties of La-doped gamma-TiAl systems based on density functional theory[J].Acta Physica Sinica,2017,66(6):066103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700