用户名: 密码: 验证码:
高煤阶煤层气储层产气能力定量评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quantitative evaluation of production capacity of high rank coalbed methane reservoir
  • 作者:王镜惠 ; 王美冬 ; 田锋 ; 刘巨光 ; 梁正中
  • 英文作者:WANG Jinghui;WANG Meidong;TIAN Feng;LIU Juguang;LIANG Zhengzhong;School of Chemistry & Chemical Engineering,Yulin University;The Third Drilling Branch of CNPC Bohai Drilling Engineering Company Limited;Engineering Technology Research Institute,Huabei Oilfield Company of CNPC;
  • 关键词:高煤阶 ; 煤层气 ; 储层评价 ; 产气能力 ; 定量评价 ; 产气能力指数
  • 英文关键词:high-rank coal;;coalbed methane;;reservoir evaluation;;gas production capacity;;quantitative evaluation;;gas production capacity index
  • 中文刊名:油气地质与采收率
  • 英文刊名:Petroleum Geology and Recovery Efficiency
  • 机构:榆林学院化学与化工学院;中国石油集团渤海钻探工程有限公司第三钻井分公司;中国石油华北油田公司工程技术研究院;
  • 出版日期:2019-07-03 16:27
  • 出版单位:油气地质与采收率
  • 年:2019
  • 期:04
  • 基金:陕西省自然科学基础研究计划“鄂尔多斯盆地东北部异常压力形成与页岩气富集机理研究”(2017JM4017)
  • 语种:中文;
  • 页:109-114
  • 页数:6
  • CN:37-1359/TE
  • ISSN:1009-9603
  • 分类号:TE328
摘要
煤层气高产区有效预测对提高煤层气单井产量和开发效益具有重要意义,为了实现煤层气储层产气能力的定量评价,基于沁水盆地南部煤层气开发数据,通过理论和统计分析,定义了储层含气性指数、煤层甲烷解吸效率指数、气水产出效率指数和产气能力指数4个参数对煤层气储层产气能力进行评价。结果表明:煤层气井日产气量随储层含气性指数、煤层甲烷解吸效率指数、气水产出效率指数的增加而增加,但相关性相对较差;当储层含气性指数大于100 m·m~3/t时,或煤层甲烷解吸效率指数大于0.04(MPa·d)~(-1)时,或气水产出效率指数大于1 mD·MPa时,单井日产气量能够达到800 m~3/d以上。产气能力指数为储层含气性指数、煤层甲烷解吸效率指数和气水产出效率指数的乘积,能够有效表征储层产气能力强弱,产气能力指数越大,煤层气井产量越高。当产气能力指数大于0.3和10 mD·m·m~3/(t·d)时,对应的单井日产气量分别大于800和1 500 m3/d。
        The effective prediction of the high production zone of the coalbed methane(CBM)is important to improve the single well production and the development benefits.In order to quantitatively evaluate the production capacity of the CBM reservoir,the gas-bearing index,desorption efficiency index of CBM,gas-water production efficiency index and production capacity index were defined through theoretical and statistical analysis of the CBM development data in southern Qinshui Basin.Results show that the daily gas production rate increases with the increase of gas-bearing index,desorption efficiency index of CBM and gas-water production efficiency index,however the correlations is not obvious.The daily gas production rate can be higher than 800 m~3/d when the gas-bearing index is higher than 100 m·m~3/t,the desorption efficiency index of CBM is higher than 0.04(MPa·d)~(-1),or the gas-water production efficiency index is higher than 1 mD·MPa.The gas-production capacity index is the product of the gas-bearing index,desorption efficiency index of CBM and the gas-water production efficiency index,and it can effectively characterize the production capacity of CBM reservoir.A higher gasproduction capacity index results in a higher daily gas production rate.When the gas-production capacity indexes are higher than 0.3 and 10 mD·m·m~3/(t·d),the daily gas production rates are higher than 800 and 1 500 m~3/d,respectively.
引文
[1]赵贤正,朱庆忠,孙粉锦,等.沁水盆地高阶煤层气勘探开发实践与思考[J].煤炭学报,2015,40(9):2 131-2 136.ZHAO Xianzheng,ZHU Qingzhong,SUN Fenjin,et al.Practice and thought of coalbed methane exploration and development in Qinshui Basin[J].Journal of China Coal Society,2015,40(9):2 131-2 136.
    [2]朱庆忠,杨延辉,左银卿,等.中国煤层气开发存在的问题及破解思路[J].天然气工业,2018,38(4):96-100.ZHU Qingzhong,YANG Yanhui,ZUO Yinqing,et al.CBM development in China:Challenges and solutions[J].Natural Gas Industry,2018,38(4):96-100.
    [3]王红岩,张建博,李景明,等.中国煤层气富集成藏规律[J].天然气工业,2004,24(5):11-13.WANG Hongyan,ZHANG Jianbo,LI Jingming,et al.Enrichment and reservoiring laws of the coalbed methane in China[J].Natural Gas Industry,2004,24(5):11-13.
    [4]杨显成,蒋有录,杨昕睿,等.煤层气含量的主控因素--以卡拉哈里盆地XX区块为例[J].油气地质与采收率,2018,25(1):56-60.YANG Xiancheng,JIANG Youlu,YANG Xinrui,et al.Study on main controlling factors of the coalbed methane content:A case study of Block XX in Kgalahari Basin[J].Petroleum Geology and Recovery Efficiency,2018,25(1):56-60.
    [5]王红岩,万天丰,李景明,等.区域构造热事件对高煤阶煤层气富集的控制[J].地学前缘,2008,15(5):364-369.WANG Hongyan,WAN Tianfeng,LI Jingming,et al.The control of tectonic thermal events on the concentration of high coal-rank coalbed methane[J].Earth Science Frontiers,2008,15(5):364-369.
    [6]曹新款,朱炎铭,王道华,等.郑庄区块煤层气赋存特征及控气地质因素[J].煤田地质与勘探,2011,39(1):16-19,23.CAO Xinkuan,ZHU Yanming,WANG Daohua,et al.Analysis of the coal bed methane occurrence characteristics and gas-controlling geologic factors in Zhenzhuang block[J].Coal Geology&Exploration,2011,39(1):16-19,23.
    [7]赵庆波,陈刚,李贵中.中国煤层气富集高产规律、开采特点及勘探开发适用技术[J].天然气工业,2009,29(9):13-19.ZHAO Qingbo,CHEN Gang,LI Guizhong.The regular patterns of highly produced CBM,its production performance and the progress of prospecting technologies in China[J].Natural Gas Industry,2009,29(9):13-19.
    [8]宋岩,柳少波,马行陟,等.中高煤阶煤层气富集高产区形成模式与地质评价方法[J].地学前缘,2016,23(3):1-9.SONG Yan,LIU Shaobo,MA Xingzhi,et al.Research on formation model and geological evaluation method of the middle to high coal rank coalbed methane enrichment and high production area[J].Earth Science Frontiers,2016,23(3):1-9.
    [9]孙粉锦,王勃,李梦溪,等.沁水盆地南部煤层气富集高产主控地质因素[J].石油学报,2014,35(6):1 070-1 079.SUN Fenjin,WANG Bo,LI Mengxi,et al.Major geological factors controlling the enrichment and high yield of coalbed methane in the southern Qinshui Basin[J].Acta Petrolei Sinica,2014,35(6):1 070-1 079.
    [10]DOU Fengke,KANG Yongshang,QIN Shaofeng,et al.The coalbed methane production potential method for optimization of wells location selection[J].Journal of Coal Science Engineering,2013,19(2):210-218.
    [11]原俊红,付玉通,宋昱.深部煤层气储层测井解释技术及应用[J].油气地质与采收率,2018,25(5):24-31.YUAN Junhong,FU Yutong,SONG Yu.Logging interpretation technology and its application to deep coalbed methane reservoir[J].Petroleum Geology and Recovery Efficiency,2018,25(5):24-31.
    [12]王勃,姚红星,王红娜,等.沁水盆地成庄区块煤层气成藏优势及富集高产主控地质因素[J].石油与天然气地质,2018,39(2):366-372.WANG Bo,YAO Hongxing,WANG Hongna,et al.Favorable and major geological controlling factors for coalbed methane accumulation and high production in the Chengzhuang Block,Qinshui Baisn[J].Oil&Gas Geology,2018,39(2):366-372.
    [13]李喆,康永尚,姜杉钰,等.沁水盆地高煤阶煤吸附时间主要影响因素分析[J].煤炭科学技术,2017,45(2):115-121.LI Zhe,KANG Yongshang,JIANG Shanyu,et al.Analysis on major factors affected to adsorption time of high rank coal in Qinshui Basin[J].Coal Science and Technology,2017,45(2):115-121.
    [14]娄剑青.影响煤层气井产量的因素分析[J].天然气工业,2004,24(4):62-64.LOU Jianqing.Factors of influencing production of coal-bed gas wells[J].Natural Gas Industry,2004,24(4):62-64.
    [15]左银卿,孟庆春,任严,等.沁水盆地南部高煤阶煤层气富集高产控制因素[J].天然气工业,2011,31(11):11-13.ZUO Yinqing,MENG Qingchun,REN Yan,et al.Controlling factors of enrichment and high deliverability of CBM gas from highrank coal beds in the southern Qinshui Basin[J].Natural Gas Industry,2011,31(11):11-13.
    [16]宋岩,柳少波,赵孟军,等.煤层气与常规天然气成藏机理的差异性[J].天然气工业,2011,31(12):47-53.SONG Yan,LIU Shaobo,ZHAO Mengjun,et al.Difference of gas pooling mechanism between coalbed methane gas and conventional natural gas[J].Natural Gas Industry,2011,31(12):47-53.
    [17]胡秋嘉,贾慧敏,祁空军,等.高煤阶煤层气井单相流段流压精细控制方法--以沁水盆地樊庄-郑庄区块为例[J].天然气工业,2018,38(9):76-81.HU Qiujia,JIA Huimin,QI Kongjun,et al.A fine control method offlowing pressure in single-phaseflow section of high-rank CBMgas development wells:A case study from the Fanzhuang-Zhengzhuang Block in the Qinshui Basin[J].Natural Gas Industry,2018,38(9):76-81.
    [18]李叶朋,申建,陶俊杰.基于支持向量机的煤层气井排采层位水源判识[J].大庆石油地质与开发,2018,37(2):171-174.LI Yepeng,SHEN Jian,TAO Junjie.Water source identification of the drained-produced horizons for the coalbed methane well based on support vector machine[J].Petroleum Geology&Oilfield Development in Daqing,2018,37(2):171-174.
    [19]王镜惠,梅明华,梁正中,等.煤层气储层应力敏感性定量表征及影响因素研究[J].石油实验地质,2018,40(6):859-863.WANG Jinghui,MEI Minghua,LIANG Zhengzhong,et al.Controls and quantitative characterization of stress sensitivity for coal seams[J].Petroleum Geology&Experiment,2018,40(6):859-863.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700