用户名: 密码: 验证码:
准噶尔盆地大井地区天然气成因、来源与成藏过程
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Genetic types,origins and accumulation process of natural gases from Dajing area,Junggar Basin
  • 作者:胡自龙 ; 卞保力 ; 刘海磊 ; 赵龙 ; 卢山 ; 王绍清
  • 英文作者:Hu Zi-long;Bian Bao-li;Liu Hai-lei;Zhao Long;Lu Shan;Wang Shao-qing;School of Geosciences and Surveying and Mapping Engineering,China University of Mining & Technology (Beijing);Research Institute of Petroleum Exploration and Development,PetroChina;Research Institute of Petroleum Exploration and Development,Xinjiang Oilfield Company,PetroChina;
  • 关键词:准噶尔盆地 ; 大井地区 ; 煤成气 ; 石钱滩组 ; 稳定碳同位素 ; 轻烃
  • 英文关键词:Junggar Basin;;Dajing area;;Coal-derived gas;;Shiqiantan Formation;;Stable carbon isotope;;Light hydrocarbons
  • 中文刊名:天然气地球科学
  • 英文刊名:Natural Gas Geoscience
  • 机构:中国矿业大学(北京)地球科学与测绘工程学院;中国石油勘探开发研究院;中国石油新疆油田公司勘探开发研究院;
  • 出版日期:2019-06-10
  • 出版单位:天然气地球科学
  • 年:2019
  • 期:06
  • 基金:国家自然科学青年基金“准噶尔盆地石炭系凝灰质烃源岩发育环境与生烃潜力研究”(编号:41802177)资助
  • 语种:中文;
  • 页:84-93
  • 页数:10
  • CN:62-1177/TE
  • ISSN:1672-1926
  • 分类号:P618.13
摘要
在油气勘探实践中,准噶尔盆地表现出油多气少的特点。自2008年克拉美丽千亿立方米大气田发现以来,10年间天然气勘探再无大的突破。为了跳出克拉美丽气田,寻找石炭系天然气勘探新的领域,对准噶尔盆地东部大井地区天然气组分、碳同位素和伴生轻烃等地球化学特征进行了系统分析,并与邻区天然气进行对比研究。在此基础上结合烃源岩埋藏史、生排烃史模拟和储层流体包裹体分析,厘定了天然气成藏过程。结果表明:①大井地区天然气为上石炭统石钱滩组烃源岩在早期生气阶段生成的煤成气;②因干酪根本身有机质非均质性导致研究区天然气等效镜质体反射率计算误差约为0.41%,其实际成熟度应该在1.05%左右,这一结果与其干燥系数相匹配;③研究区石钱滩组烃源岩在中、晚侏罗世生成低熟煤成气,并在巴塔玛依内山组顶部储层条件良好的火山岩储集体中聚集成藏,形成自生自储型火山岩岩性气藏。
        The Junggar Basin is characterized by more oil and less gas in exploration practice.No major breakthrough in natural gas exploration has been made since the discovery of the Kelameili Gas Field in 2008.In order to jump out from Kelameili Gas Field and look for a new area for natural gas exploration,this study systematically analyzed the components,carbon isotope and light hydrocarbons of natural gases from Dajing area in the eastern Junggar Basin.A comparative study was also performed with the adjacent areas.On this basis,combined with the simulation of source rocks burial history,and its generation and expulsion history,the natural gas accumulation process is determined.Results show that:(1)The natural gas from the Dajing area is coal-derived gas generated from the Upper Carboniferous Shiqiantan Formation at early gas generation stage.(2)Due to the heterogeneity of organic matters,the calculation error of the equivalent vitrinite reflectance of natural gas in the study area is approximately 0.41%,and its actual maturity should be around 1.05%,which is consistent with its dryness coefficient.(3)The Shiqiantan Formation source rocks in the study area generated low-mature coal-derived gas in the Middle and Late Jurassic,and the gas accumulated in the volcanic reservoirs with good reservoir conditions at the top of the Batamayineishan Formation,forming an self-generation and self-storage volcanic-lithologic gas reservoir.
引文
[1]Wang Xulong,Zhi Dongming,Wang Yutao,et al.Organic Geochemistry of Source Rocks and Hydrocarbons in the Junggar Basin[M].Beijing:Petroleum Industry Press,2013:1-565.王绪龙,支东明,王屿涛,等.准噶尔盆地烃源岩与油气地球化学特征[M].北京:石油工业出版社,2013:1-565.
    [2]Wang Yutao,Yang Disheng,Zhang Jian,et al.Natural Gas Generation and Accumulation in Junggar Basin[M].Beijing:Petroleum Industry Press,2014:1-173.王屿涛,杨迪生,张健,等.准噶尔盆地天然气形成与成藏[M].北京:石油工业出版社,2014:1-173.
    [3]Dai Jinxing.Giant Coal-Derived Gas Fields and Their Gas Source in China[M].Beijing:Science Press,2014:266-285.戴金星.中国煤成大气田及气源[M].北京:科学出版社,2014:266-285.
    [4]Dai J X,Zou C N,Li W.Giant Coal-derived Gas Fields and Their Gas Sources in China[M].Beijing:Science Press,2016:1-584.
    [5]Gong D Y,Li J Z,Ablimit Imin,et al.Geochemical characteristics of natural gases related to Late Paleozoic coal measures in China[J].Marine and Petroleum Geology,2018,96:474-500.
    [6]Wu Xiaozhi,Ding Jing,Xia Lan,et al.Structural evolution and hydrocarbon accumulation in Luliang Uplift in Junggar Basin[J].Xinjiang Petroleum Geology,2012,33(3):277-279.吴晓智,丁靖,夏兰,等.准噶尔盆地陆梁隆起带构造演化特征与油气聚集[J].新疆石油地质,2012,33(3):277-279.
    [7]Zheng Menglin,Tian Aijun,Yang Tongyuan.Structural evolution and hydrocarbon accumulation in the eastern Junggar Basin[J].Oil&Gas Geology,2018,39(5):908-917.郑孟林,田爱军,杨彤远.准噶尔盆地东部地区构造演化与油气聚集[J].石油与天然气地质,2018,39(5):908-917.
    [8]Li Lin,Chen Shijia,Yang Disheng,et al.Hydrocarbon generation capacity analysis of Carboniferous source rocks in Dishuiquan Sag of Junggar Basin[J].Journal of China University of Petroleum:Natural Science,2013,37(4):52-58.李林,陈世加,杨迪生,等.准噶尔盆地滴水泉凹陷石炭系烃源岩生烃能力分析[J].中国石油大学学报:自然科学版,2013,37(4):52-58.
    [9]Wang Yutao,Chen Kexun.Source characteristics and evaluation of Wucaiwan-Dajing area in eastern Junggar Basin[J].Xinjiang Petroleum Geology,1989,10(1):73-79.王屿涛,陈克迅.准噶尔盆地东部五彩湾-大井地区生油层特征及评价[J].新疆石油地质,1989,10(1):73-79.
    [10]Cao Qian,Jiang Xingge,Zhu Jianhui,et al.Simulation of source rock evolution in Carboniferous,eastern Junggar Basin[J].Petroleum Geology&Experiment,2012,34(3):314-318.曹倩,江兴歌,朱建辉,等.准噶尔盆地东部石炭系烃源岩演化模拟[J].石油实验地质,2012,34(3):314-318.
    [11]Wang Shufang,Zou Caineng,Hou Lianhua,et al.Petroleum geological characteristics of gas accumulation in Carboniferous volcanics and prospect for gas exploration,eastern Junggar Basin[J].Earth Science Frontiers,2013,20(2):226-236.王淑芳,邹才能,侯连华,等.准噶尔盆地东部石炭系火山岩气藏石油地质特征及有利勘探方向分析[J].地学前沿,2013,20(2):226-236.
    [12]Yang Haibo,Chen Lei,Kong Yuhua.A new scheme for the division of tectonic units in Junggar Basin[J].Xinjiang Petroleum Geology,2004,25(4):686-688.杨海波,陈磊,孔玉华.准噶尔盆地构造单元划分新方案[J].新疆石油地质,2004,25(4):686-688.
    [13]He Dengfa,Zhang Lei,Wu Songtao,et al.Tectonic evolution stages and features of the Junggar Basin[J].Oil&Gas Geology,2018,39(5):845-861.何登发,张磊,吴松涛,等.准噶尔盆地构造演化阶段及其特征[J].石油与天然气地质,2018,39(5):845-861.
    [14]Yi Zejun,He Dengfa.Tectono-stratigraphic sequence and basin evolution of the eastern Junggar Basin[J].Oil&Gas Geology,2018,39(5):932-942.易泽军,何登发.准噶尔盆地东部构造地层层序及盆地演化[J].石油与天然气地质,2018,39(5):932-942.
    [15]Dai Jinxing,Pei Xigu,Qi Houfa.China Natural Gas Geology(Vol.1)[M].Beijing:Petroleum Industry Press,1992:1-149.戴金星,裴锡古,戚厚发.中国天然气地质学(卷一)[M].北京:石油工业出版社,1992:1-149.
    [16]Berner U,Faber E.Empirical carbon isotope/maturity relationships for gases from algal kerogens and terrigenous organic matter,based on dry,open-system pyrolysis[J].Organic Geochemical,1996,24:947-955.
    [17]Mango F D.The origin of light hydrocarbon in petroleum:Akinetic test of the steady state catalytic hypothesis[J].Geochimica et Cosmochimica Acta,1990,54(5):1315-1323.
    [18]Chang C T,Lee M R,Lin L H,et al.Application of C7hydrocarbons technique to oil and condensate from type III organic matter in northwestern Taiwan[J].International Journal of Coal Geology,2007,71:103-114.
    [19]Dai J X,Li J,Luo X,et al.Stable carbon isotope compositions and source rock geochemistry of the giant gas accumulations in the Ordos Basin,China[J].Organic Geochemistry,2005,36:1617-1635.
    [20]Whiticar M J.Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J].Chemical Geology,1999,161(1-3):291-314.
    [21]Bernard B B,Brooks J M,Sackett W M.Light hydrocarbons in recent Texas continental shelf and slope sediments[J].Journal of Geophysical Research,1978,83:4053-4061.
    [22]Gong Deyu,Lan Wenfang,Xiang Hui,et al.Genetic types and origins of natural gases from the eastern Junggar Basin[J].Journal of China University of Mining&Technology,2019,48(1):1-11.龚德瑜,蓝文芳,向辉,等.准噶尔盆地东部地区天然气地化特征与成因来源[J].中国矿业大学学报,2019,48(1):1-11.
    [23]Gong D Y,Song Y,Wei Y Z,et al.Geochemical characteristics of Carboniferous coaly source rocks and natural gases in the southeastern Junggar Basin,NW China:Implications for new hydrocarbon explorations[J].International Journal of Coal Geology,2019,202:171-189.
    [24]Dai J X,Gong D Y,Ni Y Y,et al.Genetic types of the alkane gases in giant gas fields with proven reserves over 1 000×108m3 in China[J].Energy Exploration&Exploitation,2014,32(1):1-13.
    [25]Stahl W J,Carey B D.Source rock identification by isotope analysis of natural gases from fields in the Val Verde and Delaware Basins,West Texas[J].Chemical Geology,1975,16(4):257-267.
    [26]Liu Wenhui,Xu Yongchang.A two stage model of carbon isotopic fractionation in coal gas[J].Geochimica,1999,28(4):359-366.刘文汇,徐永昌.煤型气碳同位素演化二阶段分馏模式及机理[J].地球化学,1999,28:359-366.
    [27]Berner U,Faber E.Maturity related mixing model for methane,ethane and propane,based on carbon isotopes[J].Organic Geochemistry,1988,13:67-72.
    [28]Dow W G.Kerogen studies and geological interpretation[J].Journal of Geochemical Exploration,1977,7:79-99.
    [29]Harry D J.Three common source rock evaluation errors made by geologists during prospect or play appraisals[J].AAPGBulletin,2009,93(3):341-356.
    [30]Chen Jianping,Wang Xulong,Deng Chunping,et al.Geochemical features of source rocks and crude oil in the Junggar Basin,northwest China[J].Acta Geologica Sinica,2016,90(1):37-67.陈建平,王绪龙,邓春萍,等.准噶尔盆地烃源岩与原油地球化学特征[J].地质学报,2016,90(1):37-67.
    [31]Bumham A K,Sweeney J J.A chemical kinetic model of vitrinite maturation and reflectance[J].Geochemica et Cosmochemica Acta,1989,53(2):2649-2657.
    [32]Mango F D.An invariance in the iso-heptane of petroleum[J].Science,1987,237(4814):514-517.
    [33]Gao Yong,Mou Zhiquan,Wang Yongkai,et al.Application of fluid inclusions in the study of hydrocarbon accumulation[J].Special Oil&Gas Reservoirs,2012,19(4):37-41.高勇,牟智全,王永凯,等.流体包裹体在油气成藏研究中的应用[J].特种油气藏,2012,19(4):37-41.
    [34]Lu Huanzhang,Fan Hongrui,Ni Pei,et al.Fluid Inclusions[M].Beijing:Science and Technology Press,2004:13-45.卢焕章,范宏瑞,倪培,等.流体包裹体[M].北京:科学技术出版社,2004:13-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700