用户名: 密码: 验证码:
沉积物中天然气水合物生成过程的二维电阻层析成像观测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:2-D electrical resistivity tomography assessment of hydrate formation in sandy sediments
  • 作者:李彦龙 ; 孙海亮 ; 孟庆国 ; 刘昌岭 ; 陈强 ; 邢兰昌
  • 英文作者:Li Yanlong;Sun Hailiang;Meng Qingguo;Liu Changling;Chen Qiang;Xing Lanchang;Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology;Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology;Faculty of Engineering, China University of Geoscience;College of Information and Control Engineering, China University of Petroleum East China;
  • 关键词:天然气水合物 ; 电阻率 ; 电导率 ; 电阻层析成像 ; 排盐效应 ; 在线观测 ; 非均质分布
  • 英文关键词:Natural gas hydrate;;Electrical resistivity;;Electrical conductivity;;Electrical resistance tomography;;Salt-removing effect;;Process monitoring;;Heterogeneous distribution
  • 中文刊名:天然气工业
  • 英文刊名:Natural Gas Industry
  • 机构:自然资源部天然气水合物重点实验室·青岛海洋地质研究所;青岛海洋国家实验室海洋矿产资源评价与探测技术功能实验室;中国地质大学(武汉)工程学院;中国石油大学(华东)信息与控制工程学院;
  • 出版日期:2019-10-25
  • 出版单位:天然气工业
  • 年:2019
  • 期:10
  • 基金:国家自然科学基金青年基金项目(编号:41606078、41876051);; 泰山学者特聘专家项目(编号:ts201712079);; 国家重点研发计划项目(编号:2017YFC0307600);; 海洋国家实验室开放基金项目(编号:QNLM2016ORP0203、QNLM2016ORP0207)
  • 语种:中文;
  • 页:138-144
  • 页数:7
  • CN:51-1179/TE
  • ISSN:1000-0976
  • 分类号:P618.13;P631.322
摘要
基于室内模拟实验模拟沉积物中天然气水合物(以下简称水合物)的生成过程及其物性演化规律,可以为现场实际水合物储层动态响应规律分析提供重要的理论支撑。为此,基于ITS电阻层析成像仪,研制了适用于沉积物中水合物原位合成—分解动态探测的电阻层析成像模拟装置,并以天然海滩砂为沉积介质,模拟了含盐水沉积物体系中水合物的生成过程,根据电阻层析成像测试结果分析了水合物在沉积物截面上的生成位置和非均质性。研究结果表明:①水合物合成过程中,受排盐效应和水合物生成速率两个因素的影响,沉积物体系平均电阻率呈波动上升趋势;②较之于水合物合成,沉积物内部排盐效应对沉积物体系平均电阻率的影响存在着明显的滞后效应,水合物合成结束后沉积物体系内部仍存在盐离子浓度差异控制的传质过程;③水合物合成过程中不同区域的电导率偏移量变化幅度表现出明显的非均质性,指示水合物在沉积物内部的生成过程具有明显的非均质性。结论认为,起始条件下沉积物中气—水非均质分布特征是导致沉积物中最终水合物饱和度非均质分布的决定因素,而水合物合成过程中排盐效应导致的沉积物内部盐离子浓度的空间分布差异则是水合物合成位置变化的控制因素。
        Laboratory hydrate formation process simulation and its physical property evolution monitoring within the sediment provides a theoretical support for determining the dynamic revolution behaviors of actual hydrate reservoirs. In view of this, based on the ITS electrical resistance tomography(ERT) module, a dedicated apparatus was developed to simulate the in-situ core-scale distribution of natural gas hydrate directly during the process of hydrate formation and dissociation in artificial sediments. Beach sand was used as porous media to simulate the formation of methane hydrate and assess the 2-D ERT evolution characteristics simultaneously. The findings were obtained.(1) The apparent average resistance values of hydrate-bearing sediment system are determined by the combination of hydrate forming rate and salt-removing effect, showing fluctuation rise behaviors during the process of hydrate formation.(2) When the hydrate forming rate is high enough, hysteresis influence of salt-removing effect on apparent average resistance value is observed. After the hydrate formation, there still exists a mass transfer process controlled by the difference of salt ion concentration.(3) Difference between original and real-time ERT distribution indicates a heterogeneous formation process of hydrate within the sediments. In conclusion, initial gas-water contact relationship and distribution is the virtual factors for hydrate heterogeneous distribution behaviors, while that of spatial difference of ion concentration caused by the salt-removing effect plays a key role in promoting local hydrate formation position change.
引文
[1] Wu Nengyou, Liu Changling&Hao Xiluo. Experimental simulations and methods for natural gas hydrate analysis in China[J].China Geology, 2018, 1(1):61-71.
    [2]刘昌岭,李彦龙,孙建业,吴能友.天然气水合物试采:从实验模拟到场地实施[J].海洋地质与第四纪地质, 2017, 37(5):12-26.Liu Changling, Li Yanlong, Sun Jianye&Wu Nengyou. Gas hydrate production test:From experimental simulation to field practice[J]. Marine Geology and Quaternary Geology, 2017, 37(5):12-26.
    [3]刘昌岭,李彦龙,刘乐乐,胡高伟,陈强,吴能友,等.天然气水合物钻采一体化模拟实验系统及降压法开采初步实验[J].天然气工业, 2019, 39(6):165-172Liu Changling, Li Yanlong, Liu Lele, Hu Gaowei, Chen Qiang,Wu Nengyou, et al. An integrated experimental system for gas hydrate drilling and production and a preliminary experiment of the depressurization method[J]. Natural Gas Industry, 2019,39(6):165-172.
    [4] Shankar U&Riedel M. Gas hydrate saturation in the Krishna–Godavari basin from P-wave velocity and electrical resistivity logs[J]. Marine&Petroleum Geology, 2011, 28(10):1768-1778.
    [5]陈强,刘昌岭,邢兰昌,胡高伟,孟庆国,孙建业,等.孔隙水垂向不均匀分布体系中水合物生成过程的电阻率变化[J].石油学报, 2016, 37(2):222-229.Chen Qiang, Liu Changling, Xing Lanchang, Hu Gaowei, Meng Qingguo, Sun Jianye, et al. Resistivity variation during hydrate formation in vertical inhomogeneous distribution system of pore water[J]. Acta Petrolei Sinica, 2016, 37(2):222-229.
    [6]陈玉凤,吴能友,梁德青,胡榕华.基于分形孔隙模型的含天然气水合物沉积物电阻率数值模拟[J].天然气工业, 2018,38(11):128-134.Chen Yufeng, Wu Nengyou, Liang Deqing&Hu Ronghua. Numerical simulation on the resistivity of hydrate-bearing sediment based on fractal pore model[J]. Natural Gas Industry, 2018,38(11):128-134.
    [7] Schwalenberg K, Rippe D, Koch S&Scholl C. Marine-controlled source electromagnetic study of methane seeps and gas hydrates at Opouawe Bank, Hikurangi Margin, New Zealand[J]. Journal of Geophysical Research:Solid Earth, 2017, 122(5):3334-3350.
    [8] Wang Meng, Deng Ming, Wu Zhongliang, Luo Xianhu, Jing Jing&Chen Kai. The deep-tow marine controlled-source electromagnetic transmitter system for gas hydrate exploration[J]. Journal of Applied Geophysics, 2017, 137(12):138-144.
    [9]陈凯,景建恩,赵庆献,罗贤虎,涂广红,王猛.海底可控源电磁接收机及其水合物勘查应用[J].地球物理学报, 2017,60(11):4262-4272.Chen Kai, Jing Jian'en, Zhao Qingxian, Luo Xianhu, Tu Guanghong&Wang Meng. Ocean bottom EM receiver and application for gas hydrate detection[J]. Chinese Journal of Geophysics,2017, 60(11):4262-4272.
    [10] Li Fengguang, Sun Changyu, Li Sshengli, Chen Guangjin, Guo Xuqiang, Yang Lanying, et al. Experimental studies on the evolvement of electrical resistivity during methane hydrate formation in sediments[J]. Energy&Fuels, 2012, 26(10):6210-6217.
    [11]陈玉凤,李栋梁,梁德青,周雪冰,吴能友.南海沉积物天然气水合物饱和度与电阻率的关系[J].石油学报, 2013, 34(3):507-512.Chen Yufeng, Li Dongliang, Liang Deqing, Zhou Xuebing&Wu Nengyou. Relationship between gas hydrate saturation and resistivity in sediments of the South China Sea[J]. Acta Petrolei Sinica, 2013, 34(3):507-512.
    [12]任静雅,鲁晓兵,张旭辉.水合物沉积物电阻特性研究初探[J].岩土工程学报, 2013, 35(增刊1):161-165.Ren Jingya, Lu Xiaobing&Zhang Xuhui. Preliminary study on electric resistance of hydrate bearing sediments[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S1):161-165.
    [13]李小森,冯景春,李刚,王屹.电阻率在天然气水合物三维生成及开采过程中的变化特性模拟实验[J].天然气工业, 2013,33(7):18-23.Li Xiaosen, Feng Jingchun, Li Gang&Wang Yi. An experimental study of resistivity variation in 3D simulation of methane hydrate generation and production[J]. Natural Gas Industry, 2013, 33(7):18-23.
    [14] Permyakov ME, Manchenko NA, Duchkov AD, Manakov AY,Drobchik AN&Manshtein AK. Laboratory modeling and measurement of the electrical resistivity of hydrate-bearing sand samples[J]. Russian Geology&Geophysics, 2017, 58(5):642-649.
    [15] Cui Ziqiang, Wang Qi, Xue Qian, W Fan, L Zhang, C Zhang, et al. A review on image reconstruction algorithms for electrical capacitance/resistance tomography[J]. Sensor Review, 2016, 36(4):429-445.
    [16] Low SC, Allitt D, Eshtiaghi N&Parthasarathy R. Measuring active volume using electrical resistance tomography in a gassparged model anaerobic digester[J]. Chemical Engineering Research&Design, 2018, 130:42-51.
    [17] Priegnitz M, Spangenberg E, Thaler J, Schicks JM&Reichardt A. 3D monitoring of hydrate formation and dissociation using a cylindrical ERT[C]//EGU General Assembly Conference, 2013.
    [18]孙海亮,李彦龙,刘昌岭,邢兰昌,孟庆国.电阻层析成像技术及其在水合物开采模拟实验中的应用[J].计量学报, 2019,40(3):1-7.Sun Hailiang, Li Yanlong, Liu Changling, Xing Lanchang&Meng Qingguo. Electrical resistance tomography and the application in the simulation experiment of hydrate mining[J]. Acta Metrologica Sinica, 2019, 40(3):1-7.
    [19] Priegnitz M, Thaler J, Spangenberg E, Rücker C&Schicks JM.A cylindrical electrical resistivity tomography array for three-dimensional monitoring of hydrate formation and dissociation[J].Review of Scientific Instruments, 2013, 84(10):104502.
    [20] Walsh M. Laboratory and high-pressureflow loop investigation of gas hydrate formation and distribution using electrical tomography[C]//Proceedings of the 8th International Conference on Gas Hydrates, 28 July-1 August 2014, Beijing, China.
    [21] Priegnitz M, Thaler J, Spangenberg E, Schicks JM, Schr?tter J&Abendroth S. Characterizing electrical properties and permeability changes of hydrate bearing sediments using ERT data[J].Geophysical Journal International, 2015, 202(3):1599-1612.
    [22] Heeschen K, Spangenberg E, Schicks JM, Priegnitz M, Giese R&Luzi-Helbing Manja. Simulating the gas hydrate production test at Mallik using the pilot scale pressure reservoir LARS[C]//EGU General Assembly Conference, 27 April-2 May 2014, Vienna, Austria.
    [23] Wu Yingxiang, Li Hua, Wang Mi&Williams RA. Characterization of air-water two-phase verticalflow by using electrical resistance imaging[J]. Canadian Journal of Chemical Engineering,2005, 83(1):37-41.
    [24] Suryanto B, Saraireh D, Kim J, McCarter WJ, Starrs G&Taha HM. Imaging water ingress into concrete using electrical resistance tomography[J]. International Journal of Advances in Engineering Sciences&Applied Mathematics, 2017, 9(2):109-118.
    [25]李彦龙,刘昌岭,刘乐乐,陈强,胡高伟.含甲烷水合物松散沉积物的力学特性[J].中国石油大学学报(自然科学版),2017, 41(3):105-113.Li Yanlong, Liu Changling, Liu Lele, Chen Qiang&Hu Gaowei.Mechanical properties of methane hydrate-bearing unconsolidated sediments[J]. Journal of China University of Petroleum(Edition of Natural Science), 2017, 41(3):105-113.
    [26] Spangenberg E&Kulenkampff J. Influence of methane hydrate content on electrical sediment properties[J]. Geophysical Research Letters, 2006, 33(24):315-319.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700