用户名: 密码: 验证码:
土壤细菌趋化性研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advancement in Research on Bacterial Chemotaxis in Soil
  • 作者:朱晓艳 ; 沈重阳 ; 陈国炜 ; 张伟 ; 李保国 ; 王钢
  • 英文作者:ZHU Xiaoyan;SHEN Chongyang;CHEN Guowei;ZHANG Wei;LI Baoguo;WANG Gang;Department of Soil and Water Sciences,China Agricultural University;College of Civil Engineering,Hefei University of Technology;Department of Plan,Soil and Microbial Sciences,Michigan State University;
  • 关键词:土壤多孔异质性 ; 细菌趋化性 ; 微流控技术 ; 荧光原位杂交技术 ; 光学显微技术
  • 英文关键词:Soil pore heterogeneity;;Bacterial chemotaxis;;Microfluidics;;Fluorescence in situ hybridization;;Optical microscopy
  • 中文刊名:土壤学报
  • 英文刊名:Acta Pedologica Sinica
  • 机构:中国农业大学资源与环境学院;合肥工业大学土木与水利工程学院;Department of Plant,Soil and Microbial Sciences,Michigan State University;
  • 出版日期:2018-12-06 17:15
  • 出版单位:土壤学报
  • 年:2019
  • 期:02
  • 基金:国家重点研发专项(2016YFD0200306);; 国家自然科学基金项目(41877412);; 国家千人计划青年项目(2016)资助~~
  • 语种:中文;
  • 页:11-27
  • 页数:17
  • CN:32-1119/P
  • ISSN:0564-3929
  • 分类号:S154.3
摘要
土壤是地球生态系统中最具生命活性的组成部分,特有的孔隙结构承载着生物圈中最丰富多样的微生物生命形态,为动植物提供了大量的调控功能。土壤是一个不断演变和发展的生态系统,而微生物是土壤生态系统的核心,也是驱动碳、氮等元素以及能量循环的关键因子。趋化性是细菌在长期进化过程中形成的帮助其寻找食物或趋利避害的本能,结合其他的内在生理特征,细菌能够迅速适应动态变化的环境。营养物、异源污染物和水分条件等的不均匀分布致使土壤中细菌趋化现象普遍存在,并且时刻影响土壤微生物的群落组成及其时空分布。近年来,土壤细菌趋化性已成为国内外土壤微生物学研究的热点和重点。本文分析了土壤细菌趋化性研究的前沿问题和主要进展,阐述了细菌趋化行为模式、趋化信号传导通路和趋化性数学模型,探讨了土壤中普遍存在的细菌趋化现象及相关的主要研究技术手段(荧光原位杂交技术、微流控技术和光学显微技术),并对土壤细菌趋化性研究的发展趋势进行了展望,旨在为今后的相关研究和实际应用提供参考。
        In the geoecosystem, soil is an important component, the highest in vitality, because of its unique pore structure, which accommodates numerous micro lives, the highest in abundance and diversity in the biosphere, and plays numerous regulatory and provisional functions essential to life. Soil is a steadily evolving and developing ecosystem. The microorganisms therein are at the core of the soil ecological functions that drive the key biogeochemical cycles of carbon, nitrogen and other elements. Evolving systems of the soil microbes enable them to adapt themselves rapidly to any dynamic changes in local environment.Chemotaxis is an instinct bacteria have acquired through long-term evolution to help them hunt for food or move along nutrient gradients or away from toxicants. Heterogeneous distribution of nutrients, exogenous contaminants, and water is the main factor triggering bacterial chemotaxis everywhere in soil, which in turn always affect configuration of soil microbial community and its spatial and temporal distributions. In recent years, bacterial chemotaxis in soil has become a hot spot of focus of the study on soil microbiology both at home and abroad and this trend is likely to continue in the near future. In this review, attempts were done to summarize frontier issues and advancement of the researches the world over on soil bacterial chemotaxis,to elucidate modes of bacterial chemotactic behaviors, conduction paths of bacterial chemotactic signals,and mathematical models for bacterial chemotaxis, with a particular focus on soil bacterial chemotaxis, to explore phenomena of bacterial chemotaxis existing universally in the soil and to introduce main technical means involved in the research, such as fluorescence in situ hybridization, microfluidics and microscopy. In the end, prospects are presented of the trend and development of the research in a view to providing certain references for researches to and practical application of the study on microbial chemotaxis in future.
引文
[1]Adler J. Chemotaxis in bacteria. Science, 1966, 153(3737):708-716
    [2]Smriga S,Fernandez V I,Mitchell J G,et al.Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(6):1576-1581
    [3]Adadevoh J S T, Triolo S, Ramsburg C A, et al.Chemotaxis increases the residence time of bacteria in granular media containing distributed contaminant sources. Environmental Science and Technology,2015, 50(1):181-187
    [4]Pfeffer W. Locomotorische richtungsbewegungen durch chemische reize. Untersuchungen aus dem Botanischen Institut, in Tubingen, 1884, 3:363-482
    [5]Deng J, Orner E P, Chau J F, et al. Synergistic effects of soil microstructure and bacterial EPS on drying rate in emulated soil micromodels. Soil Biology and Biochemistry, 2015, 83:116-124
    [6]Cruz B C, Furrer J M, Guo Y, et al. Pore-scale water dynamics during drying and the impacts of structure and surface wettability. Water Resources Research,2017, 53(7):5585-5600
    [7]Lambert B S, Raina J B, Fernandez V I,et al. A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities.Nature Microbiology,2017,2(10):1344-1349
    [8]Adler J. Chemoreceptors in bacteria. Science, 1969,166(3913):1588-1597
    [9]Sampedro I,Parales R E, Krell T, et al.Pseudomonas chemotaxis. FEMS Microbiology Reviews, 2015, 39(1):17-46
    [10]Purcell E M. Life at low Reynolds number. American Journal of Physics,1977,45(1):3-11
    [11]Berg H C, Brown D A. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature,1972, 239(5374):500-504
    [12]Xie L,Berg H C. From the Cover:Bacterial flagellum as a propeller and as a rudder for efficient chemotaxis. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(6):2246-2251
    [13]Berg H C. E. coli in motion. Physics Today, 2004, 58(2):64-65
    [14]Bi S,Lai L. Bacterial chemoreceptors and chemoeffectors. Cellular and Molecular Life Sciences,2015,72(4):691-708
    [15]Sourjik V,Berg H C. Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(20):12669-12674
    [16]Bi S,Sourjik V. Stimulus sensing and signal processing in bacterial chemotaxis. Current Opinion in Microbiology, 2018, 45:22-29
    [17]Hazelbauer G L. Bacterial chemotaxis:The early years of molecular studies. Annual Review of Microbiology, 2012, 66(1):285-303
    [18]Bray D, Levin M D, Mortonfirth C J. Receptor clustering as a cellular mechanism to control sensitivity. Nature, 1998, 393(6570):85-88
    [19]Porter S L, Wadhams G H, Armitage J P. Signal processing in complex chemotaxis pathways. Nature Reviews Microbiology, 2011, 9(3):153-165
    [20]Gabel C V, Berg H C. The speed of the flagellar rotary motor of Escherichia coli varies linearly with proton motive force. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(15):8748-8751
    [21]Shimizu T S, Tu Y, Berg H C. A modular gradientsensing network for chemotaxis in Escherichia coli revealed by responses to time-varying stimuli.Molecular Systems Biology, 2014, 6(1):382-396
    [22]Alexandre G,Zhulin I B. More than one way to sense chemicals. Journal of Bacteriology, 2001,183(16):4681-4686
    [23]Shrout J D, Chopp D L, Just C L,et al. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Molecular Microbiology,2010, 62(5):1264-1277
    [24]Murray T S, Kazmierczak B I. Pseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella. Journal of Bacteriology,2008, 190(8):2700-2708
    [25]Anyan M E, Amiri A, Harvey C W, et al. Type IV pili interactions promote intercellular association and moderate swarming of Pseudomonas aeruginosa.Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(50):18013-18018
    [26]BurkartM, Toguchi A, Harshey R M. The chemotaxis system, but not chemotaxis, is essential for swarming motility in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(5):2568-2573
    [27]Mariconda S, Wang Q, Harshey R M. A mechanical role for the chemotaxis system in swarming motility.Molecular Microbiology, 2010, 60(6):1590-1602
    [28]Burrows L L. Pseudomonas aeruginosa twitching motility:Type IV pili in action. Annual Review of Microbiology,2012,66(4):493-520
    [29]Laganenka L,Colin R, Sourjik V. Corrigendum:Chemotaxis towards autoinducer 2 mediates autoaggregation in Escherichia coli. Nature Communications,2016,7:13979
    [30]Long Z, Quaife B, Salman H, et al. Cell-cell communication enhances bacterial chemotaxis toward external attractants. Scientific Reports, 2017, 7(1):12855
    [31]Paul E A. Soil microbiology, ecology and biochemistry. Oxford:Academic Press, 2014
    [32]Monod J, Wyman J,Changeux J P. On the nature of allosteric transitions:A plausible model. Journal of Molecular Biolog, 1965, 12(1):88-118
    [33]Changeux J P, Edelstein S J. Allosteric mechanisms of signal transduction. Science, 2005,308(5727):1424-1428
    [34]Emonet T,Macal C M,North M J,et al.AgentCell:A digital single-cell assay for bacterial chemotaxis. Bioinformatics, 2005,21(11):2714-2721
    [35]Bray D, Levin M D, Lipkow K. The chemotactic behavior of computer-based surrogate bacteria. Current Biology,2007,17(1):12-29
    [36]Keller E F, Segel L A. Model for chemotaxis. Journal of Theoretical Biology,1971, 30(2):225-234
    [37]Si G, Tang M, Yang X. A pathway-based mean-field model for E. coli chemotaxis:Mathematical derivation and its hyperbolic and parabolic limits. Multiscale Modeling Simulation, 2014, 12(2):907-926
    [38]Lovely P S, Dahlquist F W. Statistical measures of bacterial motility and chemotaxis. Journal of Theoretical Biology, 1975, 50(2):477-496
    [39]Rivero M A, Tranquillo R T, Buettner H M, et al.Transport models for chemotactic cell populations based on individual cell behavior. Chemical Engineering Science, 1989, 44(12):2881-2897
    [40]Zaval'skii L I. Kinetic analysis of the chemotaxis of bacteria. Biofizika,1988,33(2):328-332
    [41]Lewus P,Ford R M. Quantification of random motility and chemotaxis bacterial transport coefficients using individual-cell and population-scale assays.Biotechnology and Bioengineering, 2001,75(3):292-304
    [42]Joanna S T, Adadevoh S O, Brian D, et al.Modeling transport of chemotactic bacteria in granular media containing distributed contaminant sources.Environmental Science and Technology, 2017,51(24):14192-14198
    [43]Tecon R,Or D. Bacterial flagellar motility or hydrated rough surfaces controlled by aqueous film thickness and connectedness. Scientific Reports,2015, 6:19409
    [44]Wang G, Or D. Hydration dynamics promote bacterial coexistence on rough surfaces. The ISME Journal,2013, 7(2):395-404
    [45]Berg H C,Turner L. Chemotaxis of bacteria in glass capillary arrays. Escherichia coli, motility,microchannel plate, and light scattering. Biophysical Journal, 1990,58(4):919-930
    [46]Diaz J, Rendueles M, Diaz M. Straining phenomena in bacteria transport through natural porous media.Environmental Science and Pollution Research,2010, 17:400-409
    [47]Bhattacharjee S, Ko C H, Elimelech M. DLVO interaction between rough surfaces. Langmuir, 1998,14(12):3365-3375
    [48]Choi N C, Choi J W, Kwon K S, et al. Quantifying bacterial attachment and detachment using leaching solutions of various ionic strengths after bacterial pulse. AMB Express, 2017, 7(1):38-47
    [49]Hahn M W, O'Melia C R. Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions:Some concepts and applications. Environmental Science and Technology, 2004, 38(1):210-220
    [50]Hahn M W,Abadzic D,O'Melia C R. Aquasols:on the role of secondary minima. Environmental Science and Technology, 2004, 38:5915-5924
    [51]Adler J. A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. Journal of General Microbiology, 1973, 74(1):77-91
    [52]Larsen M H,Blackburn N, Larsen J L,et al.Influences of temperature, salinity and starvation on the motility and chemotactic response of Vibrio anguillarum. Microbiology, 2004, 150(5):1283-1290
    [53]Oleksiuk O,Jakovljevic V,Vladimirov N,et al. Thermal robustness of signaling in bacterial chemotaxis. Cell, 2011, 145(2):312-321
    [54]Adler J,Templeton B. The effect of environmental conditions on the motility of Escherichia coli. Journal of General Microbiology, 1967, 46(2):175-184
    [55]Shioi J, Dang C V,Taylor B L. Oxygen as attractant and repellent in bcterial chemotaxis. Journal ofBacteriology,1987,169(7):3118-3123
    [56]Tao Y. Boundedness in a chemotaxis model with oxygen consumption by bacteria. Journal of Mathematical Analysis and Applications, 2011,381(2):521-529
    [57]Ofek-Lalzar M, Sela N, Goldman-Voronov M, et al.Niche and host-associated functional signatures of the root surface microbiome. Nature Communications,2013, 5:4950
    [58]Caetano-Anolles G, Bauer W D, Favelukes G. Role of motility and chemotaxis in efficiency of nodulation by rhizohiummeliloti. Plant Physiology, 1988,86(4):1228-1235
    [59]De Weert S,Vermeiren H,Mulders I H,et al. Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Molecular Plant-Microbe Interactions, 2002, 15(11):1173-1180
    [60]Juarez-Hernandez D, Krell T, Corral-Lugo A, et al. Chemotaxis studies of Pseudomonas putida KT2440 and mutants in chemoreceptors for efficient colonization of tomato plants. Biotechnology World Symposium, 2014
    [61]Mark G L, Dow J M, Kiely P D, et al. Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions.Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(48):17454-17459
    [62]Zhang N,Wang D,Liu Y,et al. Effects of different plant root exudates and their organic acid components on chemotaxis,biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains.Plant and Soil, 2014, 374(1/2):689-700
    [63]Wu L, Chen J,Xiao Z,et al. Barcoded pyrosequencing reveals a shift in the bacterial community in the rhizosphere and rhizoplane of rehmannia glutinosa under consecutive monoculture.International Journal of Molecular Sciences, 2018,19(3):850-867
    [64]Pedler B E,Aluwihare L I,Farooq A. Single bacterial strain capable of significant contribution to carbon cycling in the surface ocean. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(20):7202-7207
    [65]Elgeti J,Winkler R G,Gompper G. Physics of microswimmers-single particle motion and collective behavior:A review. Reports on Progress in Physics,2015, 78(5):1-50
    [66]Drescher K, Dunkel J,Cisneros L H, et al. Fluid dynamics and noise in bacterial cell-cell and cellsurface scattering. Proceedings of the National Academy of Sciences of the United States of America,2011,108(27):10940-10945
    [67]Adadevoh J S T,Ramsburg C A, Ford R M.Chemotaxis increases the retention of bacteria in porous media with residual NAPL entrapment.Environmental Science and Technology, 2018,52(13):7289-7295
    [68]Gupta S, Pathak B, Fulekar M H. Molecular approaches for biodegradation of polycyclic aromatic hydrocarbon compounds:A review. Reviews in Environmental Science and Bio/Technology, 2015,14(2):241-269
    [69]Krell T, Lacal J, Reyesdarias J A, et al.Bioavailability of pollutants and chemotaxis. Current Opinion Biotechnology, 2013, 24(3):451-456
    [70]Harwood C S, Nichols N N, Kim M K, et al.Identification of the pca RKF gene cluster from Pseudomonas putida:Involvement in chemotaxis,biodegradation, and transport of 4-hydroxybenzoate.Journal of Bacteriology, 1994, 176(21):6479-6488
    [71]Hawkins A C, Harwood C S. Chemotaxis of Ralstonia eutropha JMP134(pJP4)to the herbicide 2,4-dichlorophenoxyacetate. Applied and Environmental Microbiology, 2002, 68(2):968-972
    [72]Coates J D, Chakraborty R, Lack J G, et al.Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature, 2001, 411(6841):1039-1043
    [73]Estevez E,Veiga M C,Kennes C. Biodegradation of toluene by the new fungal isolates Paecilomyces variotii and Exophiala oligosperma. Journal of Industrial Microbiology and Biotechnology, 2005, 32(1):33-37
    [74]Chakraborty R,Coates J D. Anaerobic degradation of monoaromatic hydrocarbons. Applied Microbiology and Biotechnology, 2004, 64(4):437-446
    [75]Lovley D R,Baedecker M J,Lonergan D J,et al. Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature, 1989,339(6222):297-300
    [76]Harms G, Zengler K, Rabus R,et al. Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducingbacteria. Applied and Environmental Microbiology,1999, 65(3):999-1004
    [77]Hess A, Zarda B,Hahn D, et al. In situ analysis of denitrifying toluene-and m-xylene-degrading bacteria in a diesel fuel-contaminated laboratory aquifer column. Applied and Environmental Microbiology,1997, 63(6):2136-2141
    [78]Rabus R,Widdel F. Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Archives of Microbiology,1995, 163(2):96-103
    [79]Ball H A, Johnson H A, Reinhard M, et al. Initial reactions in anaerobic ethylbenzene oxidation by a denitrifying bacterium,strain EB1. Journal of Bacteriology,1996,178(19):5755-5761
    [80]Demir G. Degradation of toluene and benzene by Trametes versicolor. Journal of Environmental Biology, 2004,25(1):19-25
    [81]Alagappan G, Cowan R M. Effect of temperature and dissolved oxygen on the growth kinetics of Pseudomonas putida F1 growing on benzene and toluene. Chemosphere, 2004, 54(8):1255-1265
    [82]Rui L, Kwon Y M, Fishman A, et al. Saturation mutagenesis of toluene ortho-monooxygenase of Burkholderiacepacia G4 for enhanced 1-naphthol synthesis and chloroform degradation. Applied and Environmental Microbiology, 2004,70(6):3246-3252
    [83]Parales R E, Ditty J L, Harwood C S. Toluenedegrading bacteria are chemotactic towards the environmental pollutants benzene, toluene,and trichloroethylene. Applied and Environmental Microbiology,2000,66(9):4098-4104
    [84]Kim J M,Jeon C O. Isolation and characterization of a new benzene,toluene, and ethylbenzene degrading bacterium, Acinetobacter sp. B113. Current Microbiology,2009,58(1):70-75
    [85]Jung I G, Park C H. Characteristics of Rhodococcus pyridinovorans PYJ-1 for the biodegradation of benzene, toluene, m-xylene(BTX),and their mixtures. Journal of Bioscience and Bioengineering,2004, 97(6):429-431
    [86]Alvarez P J, Vogel T M. Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries. Applied and Environmental Microbiology,1991, 57(10):2981-2985
    [87]Oh Y S,Bartha R. Construction of a bacterial consortium for the biofiltration of benzene, tolueneand xylene emissions. World Journal of Microbiology and Biotechnology, 1997, 13(6):627-632
    [88]Amor L,Kennes C, Veiga M C. Kinetics of inhibition in the biodegradation of monoaromatic hydrocarbons in presence of heavy metals. Bioresource Technology,2001, 78(2):181-185
    [89]Deeb R A,Alvarezcohen L. Temperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by tolueneenriched consortia and Rhodococcus rhodochrous.Biotechnology and Bioengineering, 2015,62(5):526-536
    [90]Prenafetaboldu F X, Vervoort J, Grotenhuis J T, et al. Substrate interactions during the biodegradation of benzene, toluene, ethylbenzene,and xylene(BTEX)hydrocarbons by the fungus Cladophialophora sp. strain T1. Applied and Environmental Microbiology, 2002,68(6):2660-2665
    [91]Kim J M, Jeon C O. Isolation and characterization of a new benzene, toluene, and ethylbenzene degrading bacterium, Acinetobacter sp. B113. Current Microbiology,2009,58(1):70-75
    [92]Stoecker M A, Herwig R P, Staley J T. Rhodococcus zopfii sp. nov.,a toxicant-degrading bacterium.International Journal of Systematic Bacteriology,1994, 44(1):106-110
    [93]Chang B V, Wu W B, Yuan S Y. Biodegradation of benzene,toluene; and other aromatic compounds by Pseudmonas sp. D8. Chemosphere, 1997,35(12):2807-2815
    [94]Eriksson M, Sodersten E, Yu Z,et al. Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils. Applied and Environmental Microbiology,2003,69(1):275-284
    [95]Rockne K J, Cheesanford J C, Sanford R A, et al.Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Applied and Environmental Microbiology, 2000,66(4):1595-1601
    [96]Lacal J, Munoz-Martinez F, Reyes-Darias J A, et al.Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas. Environmental Microbiology, 2011,13(7):1733-1744
    [97]Tartakovsky B, Levesque M, Dumortier R, et al.Biodegradation of pentachlorophenol in a continuous anaerobic reactor augmented with Desulfitobacteriumfrappieri PCP-1. Applied and Environmental Microbiology,1999, 65(10):4357-4362
    [98]Beaudet R, Levesque M J,Villemur R,et al.Anaerobic biodegradation of pentachlorophenol in a contaminated soil inoculated with a methanogenic consortium or with Desulfitobacterium frappieri strain PCP-1. Applied Microbiology and Biotechnology,1998, 50(1):135-141
    [99]Chiu T C,Yen J H,Liu T L,et al. Anaerobic degradation of the organochlorine pesticides DDT and heptachlor in river sediment of Taiwan. Bulletin of Environmental Contamination and Toxicology, 2004,72(4):821-828
    [100]Bouchard B, Beaudet R,Villemur R, et al.Isolation and characterization of Desulfitobacterium frappieri sp. nov.,an anaerobic bacterium which reductively dechlorinates pentachlorophenol to3-chlorophenol. International Journal of Systematic Bacteriology,1996,46(4):1010-1015
    [101]Palmira D B,Mariana T,Miriam H,et al.Biodegradation of ochratoxin a by bacterial strains isolated from vineyard soils. Toxins, 2015, 7(12):5079-5093
    [102]Zhang H H, Wang Y,Zhao C,et al. Biodegradation of ochratoxin by Alcaligenes faecalis isolated from soil. Journal of Applied Microbiology, 2017,123(3):661-668
    [103]Gordillo F,Chavez F P,Jerez C A. Motility and chemotaxis of Pseudomonas sp. B4 towards polychlorobiphenyls and chlorobenzoates. FEMS Microbiology Ecology,2010,60(2):322-328
    [104]Tremaroli V,Suzzi C V,Fedi S,et al. Tolerance of Pseudomonas pseudoalcaligenes KF707 to metals,polychlorobiphenyls and chlorobenzoates:effects on chemotaxis-,biofilm-and planktonic-grown cells.FEMS Microbiology Ecology,2010, 74(2):291-301
    [105]Parales R E,Harwood C S. Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene.Applied and Environmental Microbiology, 2000,66(9):4098-4104
    [106]Lanfranconi M P, Alvarez H M, Studdert C A.A strain isolated from gas oil-contaminated soil displays chemotaxis towards gas oil and hexadecane.Environmental Microbiology, 2010, 5(10):1002-1008
    [107]Liu X,Parales R E. Bacterial chemotaxis to atrazine and related s-triazines. Applied Environmental Microbiology,2009,75(17):5481-5488
    [108]Pandey J,Sharma N K, Khan F,et al.Chemotaxis of Burkholderia sp. strain SJ98 towards chloronitroaromatic compounds that it can metabolise.BMC Microbiology, 2012, 12(1):19-28
    [109]Leungsakul T, Keenan B G, Smets B F, et al. TNT and nitroaromatic compounds are chemoattractants for Burkholderiacepacia R34 and Burkholderia sp. strain DNT. Applied Microbiology and Biotechnology,2005, 69(3):321-325
    [110]Vardar G, Barbieri P, Wood T K. Chemotaxis of Pseudomonas stutzeri OX1 and Burkholderia cepacia G4 toward chlorinated ethenes. Applied Microbiology and Biotechnology,2005,66(6):696-701
    [111]Kemner K M,O'Brien S,Whiteside M D, et al. Synchrotron-based micro and nanotomographic investigations of soil aggregate microbial and pore structure. American Geophysical Union:AGU Fall Meeting Abstracts, 2017
    [112]Sherris J C, Preston N W, Shoesmith J G. The influence of oxygen and arginine on the motility of a strain of Pseudomonas sp. Journal of General Microbiology, 1957, 16(1):86-96
    [113]Liu B, Gulino M, Morse M, et al. Helical motion of the cell body enhances Caulobactercrescentus motility. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(31):11252-11256
    [114]Roy P, Periasamy A P, Lin C Y, et al.Photoluminescent graphene quantum dots for in vivo imaging of apoptotic cells. Nanoscale, 2015,7(6):2504-2510
    [115]Mao H, Cremer P S, Manson M D. A sensitive,versatile microfluidic assay for bacterial chemotaxis.Proceedings of the National Academy of Sciences of the United States of America, 2003,100(9):5449-5454
    [116]Arai R, Otsuka T, Mori K, et al. Live from under the lens:Exploring microbial motility with dynamic imaging and microfluidics. Nature Reviews Microbiology,2015,13(12):761-775

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700