用户名: 密码: 验证码:
基于量纲分析的非充分采动导水裂缝带高度预测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Prediction of the height of water flowing fractured zone under subcritical mining based on dimensional analysis
  • 作者:娄高中 ; 郭文兵 ; 高金龙
  • 英文作者:LOU Gaozhong;GUO Wenbing;GAO Jinlong;School of Energy Science and Engineering,Henan Polytechnic University;Coal Production Safety Collaborative Innovation Center in Henan Province;No.1 Coal Mine,Pingdingshan Coal Mining Co.Ltd.;
  • 关键词:非充分采动 ; 导水裂缝带高度 ; 量纲分析 ; 多元回归
  • 英文关键词:subcritical mining;;height of water flowing fractured zone;;dimensional analysis;;multiple regression
  • 中文刊名:煤田地质与勘探
  • 英文刊名:Coal Geology & Exploration
  • 机构:河南理工大学能源科学与工程学院;煤炭安全生产河南省协同创新中心;平煤股份一矿;
  • 出版日期:2019-06-25
  • 出版单位:煤田地质与勘探
  • 年:2019
  • 期:03
  • 基金:国家自然科学基金项目(51774111);; 河南省科技创新杰出人才资助项目(184200510003)~~
  • 语种:中文;
  • 页:149-155
  • 页数:7
  • CN:61-1155/P
  • ISSN:1001-1986
  • 分类号:TD745
摘要
为准确预测非充分采动导水裂缝带高度,选取开采厚度M、煤层埋深H、工作面倾斜长度L、煤层倾角α、覆岩力学性质R、覆岩结构特征S为非充分采动导水裂缝带高度主要影响因素。采用量纲分析建立了导水裂缝带高度与M, H, L,α, S间的无量纲关系式。结合30组实测数据,采用多元回归得到无量纲关系式的最优函数关系式。选取2个非充分采动工作面导水裂缝带现场实例对预测模型进行了工程验证,预测模型预测结果与实测结果吻合良好,其相对误差分别为3.64%和2.93%,预测模型的预测精度可以满足煤矿安全生产现场需要。
        In order to accurately predict the height of water flowing fractured zone under subcritical mining, mining thickness M, mining depth H, inclined length of working face L, dip angle of coal seam α, overburden mechanical properties R, overburden structure characteristics S were selected as the main influencing factors on the height of water flowing fractured zone under subcritical mining. Dimensionless relations between the height of water flowing fractured zone and M, H, L, α, S were established by dimensional analysis. Based on 30 sets of measured data, the optimal function relation of dimensionless relation was obtained by multiple regression. The prediction model is validated with field examples from two subcritical working faces, the prediction values are in good agreement with the measured values, and the relative errors are 3.64% and 2.93% respectively, the prediction accuracy of the prediction model can meet the field requirements of safe production in coal mine.
引文
[1]郭文兵,谭志祥,柴华彬,等.煤矿开采损害与保护[M].北京:煤炭工业出版社,2013:7-37.
    [2]郭增长,韩六合,邓智毅,等.极不充分开采地表移动和变形特征[J].矿山测量,2002(2):55-57.GUO Zengzhang,HAN Liuhe,DENG Zhiyi,et al.Surface movement and deformation characteristics under super-subcritical mining[J].Mine Surveying,2002(2):55-57.
    [3]施龙青,辛恒奇,翟培合,等.大采深条件下导水裂隙带高度计算研究[J].中国矿业大学学报,2012,41(1):37-41.SHI Longqing,XIN Hengqi,ZHAI Peihe,et al.Calculating the height of water flowing fracture zone in deep mining[J].Journal of China University of Mining&Technology,2012,47(1):37-41.
    [4]谭毅,郭文兵,杨达明,等.非充分采动下浅埋坚硬顶板“两带”高度分析[J].采矿与安全工程学报,2017,34(5):845-851.TAN Yi,GUO Wenbing,YANG Daming,et al.Analysis on height of“two zones”under subcritical mining in shallow coal seam with hard roof[J].Journal of Mining&Safety Engineering,2017,34(5):845-851.
    [5]李超峰,虎维岳,王云宏,等.煤层顶板导水裂缝带高度综合探查技术[J].煤田地质与勘探,2018,46(1):101-107.LI Chaofeng,HU Weiyue,WANG Yunhong,et al.Comprehensive detection technique for coal seam roof water flowing fractured zone height[J].Coal Geology&Exploration,2018,46(1):101-107.
    [6]冯洁,王苏健,陈通,等.生态脆弱矿区土层中导水裂缝带发育高度研究[J].煤田地质与勘探,2018,46(1):97-100.FENG Jie,WANG Sujian,CHEN Tong,et al.Height of water flowing fractured zone of soil layer in the ecologically fragile mining area[J].Coal Geology&Exploration,2018,46(1):97-100.
    [7]国家安全监管总局、国家煤矿安监局、国家能源局、国家铁路局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[M].北京:煤炭工业出版社,2017:55-56.
    [8]孙亚军,徐智敏,董青红.小浪底水库下采煤导水裂隙发育监测与模拟研究[J].岩石力学与工程学报,2009,28(2):238-245.SUN Yajun,XU Zhimin,DONG Qinghong.Monitoring and simulation research on development of water flowing fractures for coal mining under xiaolangdi reservoir[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(2):238-245.
    [9]尹尚先,徐斌,徐慧,等.综采条件下煤层顶板导水裂缝带高度计算研究[J].煤炭科学技术,2013,41(9):138-142.YIN Shangxian,XU Bin,XU Hui,et al.Study on height calculation of water conducted fractured zone caused by fully mechanized mining[J].Coal Science and Technology,2013,41(9):138-142.
    [10]马志伟,叶义成,王其虎,等.含钒页岩矿床开采导水裂隙带发育高度研究[J].金属矿山,2013(4):142-146.MA Zhiwei,YE Yicheng,WANG Qihu,et al.Study on height of water flowing fractured zone in containing vanadium shale deposit[J].Metal Mine,2013(4):142-146.
    [11]张宝安,李佳音,卢洋,等.采空区覆岩导水裂隙带高度预计方法对比分析[J].中国地质灾害与防治学报,2016,27(2):132-136.ZHANG Baoan,LI Jiayin,LU Yang,et al.Comparison and analysis of the prediction method of water flowing fractured zone height[J].The Chinese Journal of Geological Hazard and Control,2016,27(2):132-136.
    [12]胡小娟,李文平,曹丁涛,等.综采导水裂隙带多因素影响指标研究与高度预计[J].煤炭学报,2012,37(4):613-620.HU Xiaojuan,LI Wenping,CAO Dingtao,et al.Index of multiple factors and expected height of fully mechanized water flowing fractured zone[J].Journal of China Coal Society,2012,37(4):613-620.
    [13]李培现,谭志祥,顾伟,等.基于FLAC的导水断裂带分布规律模拟研究[J].煤炭科学技术,2015,43(4):31-34.LI Peixian,TAN Zhixiang,GU Wei,et al.Simulation study on distribution law of water flow crack zone based on FLAC[J].Coal Science and Technology,2015,43(4):31-34.
    [14]康永华,申宝宏.水体下采煤宏观分类与发展战略[M].北京:煤炭工业出版社,2017:177-184.
    [15]李振华,许延春,李龙飞,等.基于BP神经网络的导水裂隙带高度预测[J].采矿与安全工程学报,2015,32(6):905-910.LI Zhenhua,XU Yanchun,LI Longfei,et al.Forecast of the height of water flowing fractured zone based on BP neural networks[J].Journal of Mining&Safety Engineering,2015,32(6):905-910.
    [16]黄欢,姬亚东.运用偏最小二乘回归法计算导水裂缝带高度[J].矿业安全与环保,2017,44(1):40-44.HUANG Huan,JI Yadong.Application of partial least squares regression for calculating height of water flowing fractured zone[J].Mining Safety&Environmental Protection,2017,44(1):40-44.
    [17]赵高博,郭文兵,杨达明,等.综放开采覆岩破坏模型及导水裂隙带高度研究[J].中国安全科学学报,2017,27(11):144-149.ZHAO Gaobo,GUO Wenbing,YANG Daming,et al.Study on overburden failure models and height of water flowing fractured zone in fully mechanized caving mining[J].China Safety Science Journal,2017,27(11):144-149.
    [18]赵国彦,梁伟章,王少锋,等.基于量纲分析的巷道围岩松动圈预测模型[J].岩土力学,2016,37(增刊2):273-278.ZHAO Guoyan,LIANG Weizhang,WANG Shaofeng,et al.Prediction model for extent of excavation damaged zone around roadway based on dimensional analysis[J].Rock and Soil Mechanics,2016,37(S2):273-278.
    [19]岳哲,叶义成,王其虎,等.基于量纲分析的岩石相似材料抗压强度计算模型[J].岩土力学,2018,39(1):216-221.YUE Zhe,YE Yicheng,WANG Qihu,et al.A model for calculation of compressive strength of rock-like materials based on dimensional analysis[J].Rock and Soil Mechanics,2018,39(1):216-221.
    [20]胡炳南,张华兴,申宝宏.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采指南[M].北京:煤炭工业出版社,2017:172-180.
    [21]王正帅,邓喀中,谭志祥.导水裂缝带高度预测的模糊支持向量机模型[J].地下空间与工程学报,2011,7(4):723-727.WANG Zhengshuai,DENG Kazhong,TAN Zhixiang.Height prediction of water fractured zone based on fuzzy SVM[J].Chinese Journal of Underground Space and Engineering,2011,7(4):723-727.
    [22]黄福昌,倪兴华,张怀新,等.厚煤层综放开采沉陷控制与治理技术[M].徐州:中国矿业大学出版社,2007:119-120.
    [23]刘谊,朱林,金吕锋.新集矿区推覆体水文工程地质条件研究和水害防治实践[M].徐州:中国矿业大学出版社,2008:50-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700