用户名: 密码: 验证码:
拉拉铁铜矿床成因:来自细碧-角斑岩岩相学和地球化学的证据
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Genesis of the Lala iron-copper deposit:evidence from petrography of spilite-keratophyre formation and related geochemical data
  • 作者:于文佳 ; 罗照华 ; 刘永顺 ; 孙君一 ; 李重 ; 王峥 ; 唐泽勋
  • 英文作者:YU Wenjia;LUO Zhaohua;LIU Yongshun;SUN Junyi;LI Zhong;WANG Zheng;TANG Zexun;State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences;College of Resources,Environment and Tourism,Capital Normal University;Lala Branch,Liangshan Mining Ltd Co.;
  • 关键词:拉拉铁铜矿床 ; 细碧角斑岩建造 ; Sr-Nd同位素地球化学 ; 成矿关系
  • 英文关键词:Lala Iron-Copper Deposit;;spilite-keratophyre formation;;Sr-Nd isotopic geochemistry;;ore-forming relationship
  • 中文刊名:地学前缘
  • 英文刊名:Earth Science Frontiers
  • 机构:中国地质大学地质过程与矿产资源国家重点实验室;首都师范大学资源环境与旅游学院;凉山矿业股份有限公司拉拉公司;
  • 出版日期:2017-03-31 15:01
  • 出版单位:地学前缘
  • 年:2019
  • 期:01
  • 基金:国家重点基础研究发展计划“973”项目(2011CB808901);; 国家自然科学基金委员会与俄罗斯基础研究基金会合作项目(RFBR14-05-91162-NSFC);; 中国地质调查局地质调查项目(1212011220921,1212011121266,12120113094100,1212011121075);; 中央高校基本科研业务费专项资金资助项目(2-9-2015-413)
  • 语种:中文;
  • 页:304-316
  • 页数:13
  • CN:11-3370/P
  • ISSN:1005-2321
  • 分类号:P618.31;P618.41;P586
摘要
拉拉铁铜矿床是康滇铜矿带最大的IOCG矿床之一,过去曾一度被认定为海底喷流成因,现已逐渐被学者摒弃。然而,对于典型IOCG矿床的实例研究尚存在诸多疑问,特别是对拉拉地区广泛分布的钠长岩类与成矿关系的争议颇多。文中通过对拉拉小露天采场细碧角斑岩建造进行岩相学、地球化学和电子探针面扫描研究,发现其成矿期晚于细碧角斑岩建造形成时期,不存在火山喷发沉积成矿期。岩相学研究表明,角斑岩基质中既有原生钠长石呈残余斑晶产出,也有次生钠长石呈它形粒状交代原生钠长石现象,且角斑岩含矿量较细碧岩低;钠长石的电子探针面扫描显示磁铁矿沿钠长石四周分布,且晚期成矿流体具有富K和Al的特点,说明细碧岩受到了晚期构造变动的影响。成矿流体呈脉状侵入到细碧岩的片理中,在片理化带发育大量黑云母、白云母,并富集大量的金属氧化物、金属硫化物。地球化学显示,细碧角斑岩明显富集Nb、Ta、Zr和Hf,强烈亏损Ba、Pb、Sr和Ti,∑REE变化较大,成矿流体的Na含量较低且富含大量的K、Al、CO2和H2O。87Sr/86Sr初始比值为0.701 26~0.762 41,显示其受到了地壳混染影响。5件角斑岩εNd(t)值为-1.09~6.75,暗示流体上升途径亏损地幔—地壳的过程。成矿流体来自地下深处的岩浆房,不断上升至地壳,在上升过程中侵入到薄弱带或片理化岩石成矿,这一成矿过程类似于透岩浆流体模型。
        The Lala Iron-Copper Deposit,once considered submarine volcanic sedimentary mineralization,is now regarded by most scholars as one of the largest IOCG deposits in the Kang Dian copper belt.However,existing case studies of typical IOCG deposits had been problematic,at the center is the controversy over the widely distributed albitites and their relationship to mineralization in Lala area.Here,through petrographical,geochemical and scanning electron microprobe analyses of spilite-keratophyre formation in the Lala Xiaolutian pit,we confirm that the mineralization period was later than the spilite-keratophyre formation,therefore volcanic sedimentary mineralization did not occur.Our petrography data showed that both primary albite phenocrysts and secondary albites were in the keratophyre matrix;secondary albites replaced primary albites with small anhedral granular albites;and ore-bearing capacity of keratophyre was low.Electron microprobe analysis showed that magnetite is distributed along the albite,and the late ore-forming fluids are rich in K and Al,suggesting spilite was affected by the late tectonic movement.Moreover,the ore-forming fluid intruded into spilite foliation in a vein pattern,producing large amount of biotite and muscovite and enriching metal oxides and sulfides in the schistositilization zone.Geochemical composition revealed that spilite-keratophyre formation was significantly enriched in Nb,Ta,Zr and Hf,and depleted greatly in Ba,Pb,Sr and Ti;∑REE changed largely;and the ore-forming fluid had lower Na but higher K,Al,CO2 and H2 O contents.The initial 87 Sr/86 Sr ratio lied between 0.70126-0.76241,indicating it has been affected by crustal contamination.Furthermore,five keratophyre samples yielded aεNd(t)value of-1.09-6.75,consistent with a mantel-crust process,such that the ore-forming fluid formed initially in the deep magma chambers,ascended then to the crust and intruded into the weak zone or foliated rock.This process is similar to the transmagmatic fluid model.
引文
[1]GROVES D I,BIERLEIN F P,MEINERT L D,et al.Iron Oxide Copper-Gold(IOCG)deposits through earth history:implications for origin,lithospheric setting,and distinction from other epigenetic iron oxide deposits[J].Economic Geology,2010,105(3):641-654.
    [2]BARTON M D.Iron oxide(-Cu-Au-REE-P-Ag-U-Co)systems[J].Treatise on Geochemistry,2014,3(3):515-541.
    [3]HAYNES D W.Iron oxide copper(-gold)deposits:their position in the ore deposit spectrum and modes of origin[M]∥PORTER T M.Hydrothermal Iron Oxide Copper-Gold&related deposits:aglobal perspective.Adelaide:PGC Publishing,2000,1:71-90.
    [4]HITZMAN M W.Iron Oxide-Cu-Au Deposits:what,where,When and why[M]∥PORTER T M.Hydrothermal Iron Oxide Copper-Gold&related deposits:aglobal perspective.Adelaide:PGC Publishing,2000,1:9-25.
    [5]WILLIAMS P J,BARTON M D,FONTBOTE L,et al.I-ron oxide-copper-gold deposits:geology,space-time distribution and possible modes of origin[J].Economic Geology,2005,100th Anniversary Volume(1):371-405.
    [6]NASLUND H R,HENRíQUEZ F,NYSTRōM J O,et al.Magmatic iron ores and associated mineralization:examples from the Chilean High Andes and Coastal Cordillera[M]∥PORTER T M.Hydrothermal Iron Oxide Copper-Gold&related deposits:aglobal perspective[N].Adelaide:PGCPublishing,2002,2(11):207-226.
    [7]CHEN H,KYSER T K,CLARK A H.The Marcona magnetite deposit,Ica,South-Central Peru:aproduct of hydrous,iron oxide-rich melts?[J].Economic Geology,2010,105(8):1441-1456.
    [8]BARTON M D,JOHNSON D A.Evaporitic-source model for igneous-related Fe oxide(REE-Cu-Au-U)mineralization[J].Geology,1996,24(3):259-262.
    [9]BARTON M D,JOHNSON D A.Alternative brine sources for Fe-oxide(-Cu-Au)systems:implications for hydrothermal alteration and metals[M]∥PORTER T M.Hydrothermal Iron Oxide Copper-Gold&related deposits:aglobal perspective.Adelaide:PGC Publishing,2000,1:43-60.
    [10]JOHNSON J P,MCCULLOCH M T.Sources of mineralising fluids for the Olympic Dam deposit(South Australia):Sm-Nd isotopic constraints[J].Chemical Geology,1995,121(1):177-199.
    [11]POLLARD P J.Evidence of a magmatic fluid and metal source for Fe-oxide Cu-Au mineralization[M]∥PORTER TM.Hydrothermal Iron Oxide Copper-Gold&related deposits:aglobal perspective.Adelaide:PGC Publishing,2000,1:27-41.
    [12]POLLARD P J.An intrusion-related origin for Cu-Au mineralization in iron oxide-copper-gold(IOCG)provinces[J].Mineralium Deposita,2006,41(2):179-187.
    [13]SILLITOE R H.Iron oxide-copper-gold deposits:an Andean view[J].Mineralium Deposita,2003,38(7):787-812.
    [14]SKIRROW R G,BASTRAKOV E N,BAROVICH K,et al.Timing of iron oxide Cu-Au-(U)hydrothermal activity and Nd isotope constraints on metal sources in the Gawler Craton,South Australia[J].Economic Geology,2007,102(8):1441-1470.
    [15]ZHU Z M,SUN Y.Direct Re-Os dating of chalcopyrite from the Lala IOCG deposit in the Kangdian Copper Belt,China[J].Economic Geology,2013,108(4):871-882.
    [16]CHEN W.Origin and tectonic environment of the Lala FeCu-(Mo,REE)deposit,Sichuan Province,SW China[D].Hong Kong:University of Hong Kong,2013:1-273.
    [17]李泽琴,胡瑞忠,王奖臻,等.中国首例铁氧化物-铜-金-铀-稀土型矿床的厘定及其成矿演化[J].矿物岩石地球化学通报,2002,21(4):258-260.
    [18]ZHAO J H,ZHOU M F,YAN D P,et al.Reappraisal of the ages of Neoproterozoic strata in South China:no connection with the Grenvillian orogeny[J].Geology,2011,39(4):299-302.
    [19]王奖臻,李泽琴,黄从俊.康滇地轴元古代重大地质事件与拉拉IOCG矿床成矿响应[J].地球科学进展,2012,27(10):1074-1079.
    [20]REYNOLDS L J,LACHLAN J.Geology of the Olympic Dam Cu-U-Au-Ag-REE deposit[M]∥PORTER T M.Hydrothermal Iron Oxide Copper-Gold&related deposits:a global perspective.Adelaide:PGC Publishing,2000,1:93-104.
    [21]BAKER T.Alteration,mineralization,and fluid evolution at the Eloise Cu-Au deposit,Cloncurry District,Northwest Queensland,Australia[J].Economic Geology,1998,93(8):1213-1236.
    [22]MARSCHIK R.The Candelaria-Punta del Cobre iron oxide Cu-Au(-Zn-Ag)deposits,Chile[J].Economic Geology,2001,96(96):1799-1862.
    [23]MARIANNE R,LANDTWING,E D D.Evolution of the breccia-hosted porphyry Cu-Mo-Au deposit at Agua Rica,Argentina:progressive unroofing of a magmatic hydrothermal system[J].Economic Geology,2002,97(6):1273-1292.
    [24]朱志敏,周家云,罗丽萍,等.拉拉铁氧化物-铜-金矿床(IOCG)的流体过程:不同矿化阶段黄铁矿微量元素约束[J].矿物学报,2009,29(增刊1):272-273.
    [25]CHEN W T,ZHOU M F.Paragenesis,stable isotopes,and molybdenite Re-Os isotope age of the Lala iron-copper deposit,Southwest China[J].Economic Geology,2012,107(3):459-480.
    [26]周家云,朱志敏,陈家彪,等.四川会理拉拉铜矿对会理-东川坳拉槽新元古代构造岩浆事件的成矿响应[J].沉积与特提斯地质,2009,29(3):84-89.
    [27]四川四○三地质队.四川省会理县拉拉铜矿落凼矿区延深勘探及资源储量核实报告[R].峨眉:四川省地质矿产勘查开发局,2012:1-253.
    [28]赵文霞,胡育贤,廖成竹,等.电子探针中的Map图在矿物出溶体中的应用:以石榴石橄榄岩中橄榄石的矿物出溶体为例[J].中山大学学报(自然科学版),2004,43(5):95-97.
    [29]WANG W,LIU S,BAI X,et al.Geochemistry and zircon U-Pb-Hf isotopes of the late Paleoproterozoic Jianping diorite-monzonite-syenite suite of the North China Craton:implications for petrogenesis and geodynamic setting[J].Lithos,2013,162(2):175-194.
    [30]濮巍,赵葵东,凌洪飞,等.新一代高精度高灵敏度的表面热电离质谱仪(Triton TI)的Nd同位素测定[J].地球学报,2004,25(2):271-274.
    [31]SUN S S,MCDONOUGH W F.Chemical and isotopic systematics of oceanic basalts;implications for mantle composition and processes[J].Geological Society,1989,42(1):313-345.
    [32]BOYNTON W V.Cosmochemistry of the rare earth elements:meteorite studies[J].Developments in Geochemistry,1984,2(2):63-114.
    [33]BAROVICH K M,PATCHETT P J.Behavior of isotopic systematics during deformation and metamorphism:a Hf,Nd and Sr isotopic study of mylonitized granite[J].Contributions to Mineralogy and Petrology,1992,109(3):386-393.
    [34]POLAT A,HOFMANN A W,ROSING M T.Boninite-like volcanic rocks in the 3.7-3.8Ga Isua greenstone belt,West Greenland:geochemical evidence for intra-oceanic subduction zone processes in the early Earth[J].Chemical Geology,2002,184(3):231-254.
    [35]WINCHESTER J A,FLOYD P A.Geochemical discrimination of different magma series and their differentiation products using immobile elements[J].Chemical Geology,1977,20(4):325-343.
    [36]HARLOV D E,FRSTER H J.Fluid-induced nucleation of(Y+REE)-phosphate minerals within apatite:nature and experiment(Part II.Fluorapatite)[J].American Mineralogist,2011,87(8/9):245-261.
    [37]FLCHE M R L,CAMIRG,JENNER G A.Geochemistry of post-Acadian,Carboniferous continental intraplate basalts from the Marimes Basin,Magdalen Islands,Quebec,Canada[J].Chemical Geology,1998,148(3/4):115-136.
    [38]MAZDAB F K,JOHNSON D A,BARTON M D.Trace element characteristics of hydrothermal titanite from ironoxide-Cu-Au(IOCG)mineralization[J].Geochimica et Cosmochimica Acta,2008,72(12):A609.
    [39]DIAMOND L W.Fluid chemistry of orogenic lode gold deposits and implications for genetic models[J].SEG Reviews,2000,13:141-162.
    [40]FAIRBAIRN H W,HURLEY P M,PINSON W H,et al.The relation of discordant Rb-Sr mineral and whole rock ages in an igneous rock to its time of crystallization and to the time of subsequent 87Sr/86Sr metamorphism[J].Geochimica et Cosmochimica Acta,1961,23(1):135-144.
    [41]GLEASON J D,MARIKOS M A,BARTON M D,et al.Neodymium isotopic study of rare earth element sources and mobility in hydrothermal Fe oxide(Fe-P-REE)systems[J].Geochimica et Cosmochimica Acta,2000,64(6):1059-1068.
    [42]CHEN W T,ZHOU M F,GAO J F.Constraints of Sr isotopic compositions of apatite and carbonates on the origin of Fe and Cu mineralizing fluids in the Lala Fe-Cu-(Mo,LREE)deposit,SW China[J].Ore Geology Reviews,2014,61(9):96-106.
    [43]周家云,郑荣才,朱志敏,等.四川会理拉拉铜矿辉长岩群地球化学与Sm-Nd同位素定年[J].矿物岩石地球化学通报,2009,28(2):111-122.
    [44]罗照华,卢欣祥,陈必河.透岩浆流体成矿作用导论[M].北京:地质出版社,2009:2669-2678.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700