用户名: 密码: 验证码:
河北武安坦岭多斑斜长斑岩中基质矿物特征及其研究意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics and research significance of matrix minerals in Tanling polyphenocryst plagioporphyry,Wu'an,Hebei Province
  • 作者:刘璐璐 ; 苏尚国 ; 杨睿娜 ; 罗照华 ; 崔晓亮
  • 英文作者:LIU Lulu;SU Shangguo;YANG Ruina;LUO Zhaohua;CUI Xiaoliang;School of Earth Sciences and Resources,China University of Geosciences (Beijing);No.2 Institute of Geological and Mineral Resources Survey,Henan Bureau of Geo-exploration and Mineral Development;
  • 关键词:多斑斜长斑岩 ; 基质矿物 ; 角闪石 ; 矿物温压计 ; 冻结岩浆活化
  • 英文关键词:Poly-phenocryst plagioporphy;;amphibole;;geothermobarometer;;remobilizing mechanism of frozen magma chambers
  • 中文刊名:地学前缘
  • 英文刊名:Earth Science Frontiers
  • 机构:中国地质大学(北京)地球科学与资源学院;河南省地质矿产勘查开发局第二地质矿产调查院;
  • 出版日期:2017-03-31 15:21
  • 出版单位:地学前缘
  • 年:2019
  • 期:01
  • 基金:中国地质调查局项目(12120115069701);; 国家自然科学基金项目(41272105);; 教育部博士学科点基金项目
  • 语种:中文;
  • 页:290-303
  • 页数:14
  • CN:11-3370/P
  • ISSN:1005-2321
  • 分类号:P588.1;P577
摘要
河北武安坦岭斜长斑岩具有多斑斑状结构,基质为显微晶质结构。岩相学观察表明,斜长石斑晶有一个宽广的核部和一个宽度可变的条纹长石反应边,个别核部包含有角闪石、黑云母等矿物。基质矿物主要由蓝透闪石、条纹长石(An0Ab8.4Or91.5~An0.1Ab57.3Or42.6)、石英、钾长石(An0.3Ab5.9Or93.7~An0.3Ab4.7Or95.2)、钠长石(An0.2Ab98.3Or1.5~An0.1Ab99.2Or0.7)、磁铁矿、赤铁矿、钛铁矿、磷灰石、榍石和锆石等11种矿物组成。角闪石温压计计算结果得出,基质角闪石核部的结晶压力高于边部,核部为34.05 MPa,对应的结晶温度为660.35℃,结晶深度为1.29km;边部的结晶压力为24.32MPa,结晶温度为598.32℃,结晶深度为0.92km;而斜长石斑晶中的角闪石形成时压力为159.51~178.19MPa,温度为817.68~819.79℃,对应的形成深度为6.03~6.73km。基质角闪石在Al2O3-TiO2图上落在壳源区,而斑晶中的角闪石和黑云母都落在壳幔混合区。斜长石、条纹长石、磁铁矿和磷灰石的微量和稀土元素测试数据显示,其都具有相对富集LILE、亏损HFSE的特点,暗示了基质矿物的形成有流体参与。ICT三维扫描结果显示,斜长斑岩基质中的孔隙体积含量约为3.428%,铁质体积含量为4.371%,且铁氧化物和孔隙具弱连通性。通过讨论分析,笔者得出:(1)坦岭斜长斑岩中斜长石斑晶具有明显的交代结构,且晶体本身没有明显熔蚀现象,这些特征表明大量的斜长石斑晶快速上升,即"冻结岩浆房"的活化机制与流体密切相关;(2)斜长斑岩中基质矿物有十一种,且矿物类型复杂,不符合平衡系统矿物相律,应属于流体晶矿物组合;(3)坦岭斜长斑岩的基质"岩浆"可能是一种富Fe、K、P、Si、Na等元素的熔体-流体流;(4)多斑斜长斑岩的形成经历了(1)深度6~7km的深部岩浆房形成斜长石堆晶→(2)富Fe、K、P、Si、Na等元素的熔体-流体流加入深部岩浆房,冻结岩浆房活化→(3)由于流体超压,含大量斜长石斑晶的熔体-流体在地壳浅部(0.9~1.2km)呈小岩株状或岩脉状就位。多斑斜长斑岩为深部找矿提供了有力的线索。
        The poly-phenocryst plagioporphyry in Tanling,Wu'an(Hebei)was found with poly-phenocryst porphyrotopic texture and microcrystalline matrix.The rim of plagioclase phenocrysts consists of variablewidth perthite,while oligoclase-albite made up the broad core where trace of amphibole and biotite were found in isolated phenocrysts.The matrix comprises 11 minerals mainly:winchite,perthite(An0Ab8.4Or91.5-An0.1Ab57.3Or42.6),quartz,potassium feldspar(An0.3Ab5.9Or93.7-An0.3Ab4.7Or95.2),albite(An0.2Ab98.3Or1.5-An0.1Ab99.2Or0.7),magnetite,hematite,ilmenite,apatite,sphene,and zircon.T-P calculation of amphiboles using amphibole barometer showed that the average crystal pressure decreased from34.05 to 24.32 MPa,corresponding temperature dropped from660.35 to 598.49℃,and crystal depth changed from1.29 to 0.93 km in the matrix amphibole core.In contrast,crystal pressure(159.51-178.19 MPa),temperature(817.68-819.79℃)and depth(6.03-6.73 km)were all higher in the plagioclase phenocryst amphiboles.Al2O3-TiO2 diagram showed that the plagioclase phenocryst amphibole and biotite in plagioclase phenocryst was crust-mantle mixed origin,and the matrix amphibole was crust origin.LA-ICP-MS analysis of matrix minerals revealed that Al2O3-TiO2 most of them were enriched in LILE and depleted in LREE,indicating fluid was involved during the formation of matrix minerals.ICT scannogram demonstrated that pore and iron oxides volume in the matix was about 3.428% and 4.371%respectively,and they each had weak-connectivity.Above all,we suggest that:(1)A large amount of plagioclase phenocrysts ascended rapidly to near surface with no sign of corrosion or resorption,suggesting the remobilizing mechanism of frozen magma chambers is closely related to fluid;(2)the matrix magma of plagioporphyry was probably a melt-fluid flow rich in Fe,K,P,Si,Na,etc.,and(3)the plagioporphyry in Tanling,Wu'an may provide physical boundary conditions for migration or unloading of ore-forming material as well as clues for deep prospecting.
引文
[1]CARMICALAEL I,TURNER F J,VERHOOGEN J.Igneous petrology[M].NewYork:McGrawHill,1974:1-739.
    [2]COUCH S,SPARKS R S J,CARROLL M R.Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers[J].Nature,2001,411:1037-1039.
    [3]BACHMANN O,BERGANTZ G W.Gas percollation in upper crustal silicic crystal mushes as a mechanism for upward heat advection and rejuvenation of near-solidus magma bodies[J].Journal of Volcanology and Geothermal Research,2006,149(1/2):85-102.
    [4]BURGISSER A,BERGANTZ G W.A rapid mechanism to remobilize and homogenize highly crystalline magma bodies[J].Nature,2011,471:212-216.
    [5]HUBER C,BACHMANN O,DUFEK J.Thermo-mechanical reactivation of locked crystal mushes:melting-induced internal fracturation and assimilation processes in magmas[J].Earth and Planetary Science Letters,2011,304(3):443-454.
    [6]PARMIGIANI A,HUBER C,BACHMANN O.Mush microphysics and the reactivation of crystal-rich magma reservoirs[J].Journal of Geophysical Research:Solid Earth,2015,119(8):6308-6322.
    [7]罗照华,卢欣祥,许俊玉,等.成矿侵入体的岩石学标志[J].岩石学报,2010,26(8):2247-2254.
    [8]程黎鹿.峨眉山大火成岩省的岩浆运移、滞留、演化过程的岩石学和数值模拟研究[D].北京:中国地质大学(北京),2014:1-161.
    [9]刘璐璐,苏尚国,侯建光,等.河北武安坦岭多斑斜长斑岩的成因:冻结岩浆房活化机制[J].岩石学报,2017,33(1):204-220.
    [10]罗照华,邓晋福,韩秀卿.太行山造山带岩浆活动及其造山作用过程反演[M].北京:地质出版社,1999:1-124.
    [11]陈斌,刘超群,田伟.太行山中生代岩浆作用过程中的壳幔岩浆混合作用:岩石学和地球化学证据[J].地学前缘,2006,13(2):140-147.
    [12]郑建民,谢桂青,陈懋弘,等.岩体侵位机制对矽卡岩型矿床的制约:以邯邢地区矽卡岩铁矿为例[J].矿床地质,2007,26(4):481-485.
    [13]尹明,郭敏,张海东,等.冀南西石门矽卡岩型铁矿床成矿年代:热液锆石U-Pb年龄的证据[J].西北地质,2014,47(4):198-208.
    [14]DENG J F,MO X X,ZHAO H L,et al.A new model for the dynamic evolution of Chinese lithosphere:‘continental roots-plume tectonics'[J].Earth-Science Reviews,2004,65(3/4):223-275.
    [15]邓晋福,苏尚国,赵海玲,等.华北地区燕山期岩石圈减薄的深部过程[J].地学前缘,2003,10(3):41-50.
    [16]翟明国,朱日祥,刘建明,等.华北东部中生代构造体制转折的关键时限[J].中国科学:D辑,2003,33(10):913-920.
    [17]FAN W M,ZHANG H F,BAKER J,et al.On and off the North China craton:where is the Archean Keel?[J].Journal of Petrology,2000,41(7):933-950.
    [18]路凤香,郑建平,李伍平,等.中国东部显生宙地幔演化的主要样式:“蘑菇云”模型[J].地学前缘,2000,7(1):97-107.
    [19]GRIFFIN W L,ZHANG A D,O'REILLY S Y,et al.Phanerozoic evolution of the lithosphere beneath the SinoKorean craton[M]∥FLOWER M F J,CHUNG S L,LO CH,et al.Mantle dynamics and plate interactions in East A-sia.American Geophysical Union,Geodynamic Series,1998,27:107-126.
    [20]吴福元,葛文春,孙德有,等.中国东部岩石圈减薄研究中的几个问题[J].地学前缘,2003,10(3):51-60.
    [21]陈斌,翟明国,田伟,等.太行山南端中生代杂岩体的岩石成因:元素和Nd-Sr-Pb同位素的证据[J].矿物岩石地球化学通报,2005,24(2):93-102.
    [22]彭头平,王岳军,范蔚茗,等.南太行山闪长岩的SHRIMP锆石U-Pb年龄及岩石成因研究[J].岩石学报,2004,20(5):1253-1262.
    [23]孙熠,肖龙,朱丹,等.太行山南段武安闪长-二长杂岩体的年代学、地球化学特征及地质意义[C]∥中国矿物岩石地球化学学会第14届学术年会论文集.南京:中国矿物岩石地球化学学会,2013:1.
    [24]SMITH J V.Feldspar minerals:2Chemical and textureal properties[M].Berlin,Heidelberg:Springer-Verlag,1974.
    [25]罗照华,杨宗锋,代耕,等.火成岩的晶体群与成因矿物学展望[J].中国地质,2013,(1):176-181.
    [26]SUN S S,MCDONOUGH W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[M]∥SAUNDERS A D,NORRY M J.Magmatism in the ocean basin.London:Geological Society,Special Publication,1989,42(1):313-345.
    [27]LEAKE B E,WOOLEY A R,ARPS C E S,et al.Nomenclature of amphiboles:report of the subcommittee on amphiboles of the international mineralogical association,commission on new minerals and mineral names[J].The Canadian Mineralogist,1997,35:219-246.
    [28]PUTNIS A,HINRICHS R,PUTNIS C V,et al.Hematite in porous red-clouded feldspars:evidence of large-scale crustal fluid-rock interaction[J].Lithos,2007,95(1):10-18.
    [29]HARLOV D E,HANSEN E C,BIGLER C.Petrological evidence for K-feldspar metasomatism in granulite facies rocks[J].Chemical Geology,1998,151:373-386.
    [30]WAlKER F D L,LEE M R,PARSONS I.Micropores and micropermeable texture in alkali feldspars:geochemical and geophysical implications[J].Mineralogical Magazine,1995,59(3):505-534.
    [31]方占仁,陈挺.暗化斜长石:一种反条纹长石结构[J].长春地质学院学报,1985,4:111-112.
    [32]牛利锋,张宏福.南太行地区中基性侵入岩中角闪石的矿物学及其成因[J].大地构造与成矿学,2005,29(2):269-277.
    [33]RIDOLFI F,RENZULLI A,PUERINI M.Stability and chemical equilibrium of amphibole in calc-alkaline magmas:an overview,new thermobarometric formulations and application to subduction-related volcanoes[J].Contributions to Mineralogy and Petrology,2010,160(1):45-66.
    [34]周作侠.湖北丰山洞岩体成因探讨[J].岩石学报,1986,2(1):59-70.
    [35]姜常义,安三元.论火成岩中钙质角闪石的化学组成特征及其岩石学意义[J].矿物岩石,1984,3:1-9.
    [36]GOOD D J,CROCKET J H,BARNETT R L.A secondary clinopyroxene-chlorite-spinel assemblage in clinopyroxenite of the Mann complex,Abitibi Belt,Ontario:an unusual hydrothermal alteration suite[J].Mineralogy and Petrology,1997,59(1/2):69-90.
    [37]MCCUAIG T C,KERRICH R,GROVES D I,et al.The nature and dimensions of regional and local gold-related hydrothermal alteration in tholeiitic metabasalts in the Norseman gold fields:the missing link in a crustal continuum of gold deposits[J]?Mineralium Deposita,1993,28(6):420-435.
    [38]Locock A J.An excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012recommendations[J].Computers&Geosciences,2014,62(1):1-11.
    [39]ENGVIK A K,PUTNIS A,GERALD J D F,et al.Albitization of granitic rocks:the mechanism of replacement of oligoclase by albite[J].The Canadian Mineralogist,2008,46(6):1404-1415.
    [40]CARICCHI L,BURLINI L,ULMER P,et al.Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics[J].Earth and Planetary Science Letters,2007,264(3):402-419.
    [41]罗照华,卢欣祥,陈必河,等.透岩浆流体成矿作用导论[M].北京:地质出版社,2009:1-177.
    [42]苏尚国,汤中立.岩浆通道成矿系统的理论与实践[J].矿床地质,2010(增刊1):885-886.
    [43]苏尚国,汤中立,罗照华,等.岩浆通道成矿系统[J].岩石学报,2014(11):3120-3130.
    [44]黄凡,罗照华,卢欣祥,等.东沟含钼斑岩由太山庙岩基派生[J].矿床地质,2009,28(5):89-87.
    [45]罗照华,莫宣学,卢新祥,等.透岩浆流体成矿作用:理论分析和野外证据[J].地学前缘,2007,14(3):165-183.
    [46]罗照华,卢新祥,郭少丰,等.透岩浆流体成矿体系[J].岩石学报,2008,24(12):2669-2678.
    [47]罗照华,高飞.透岩浆流体成矿作用理论简介[J].自然杂志,2009,31(5):254-257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700