用户名: 密码: 验证码:
地面起伏湿气集输管道涡流排液数值模拟及试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation and test on vortex drainage of hilly-terrain wet gas pipelines
  • 作者:刘占良 ; 李柏鹏 ; 刘洋 ; 曹学文 ; 孙媛
  • 英文作者:LIU Zhanliang;LI Bopeng;LIU Yang;CAO Xuewen;SUN Yuan;No.1 Gas Production Plant,PetroChina Changqing Oilfield Company;College of Pipeline and Civil Engineering, China University of Petroleum(East China);
  • 关键词:起伏管道 ; 积液 ; 涡流工具 ; 持液率 ; 压降
  • 英文关键词:hilly-terrain pipelines;;liquid loading;;vortex tool;;liquid holdup;;pressure drop
  • 中文刊名:油气储运
  • 英文刊名:Oil & Gas Storage and Transportation
  • 机构:中国石油长庆油田分公司第一采气厂;中国石油大学(华东)储运与建筑工程学院;
  • 出版日期:2018-10-17 13:38
  • 出版单位:油气储运
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金资助项目“水下油气临界分流取样计量理论及实现方法”,51574272;; 国家重点研发计划专项“临海油气管道检测、监控技术研究与仪器装备研制”,2016YFC0802302;; 研究生创新基金资助项目“水下油气管线微孔泄漏及扩散特性研究”,18CX06039A
  • 语种:中文;
  • 页:46-53
  • 页数:8
  • CN:13-1093/TE
  • ISSN:1000-8241
  • 分类号:TE866
摘要
为有效清除地面起伏湿气集输管路中的积液,设计加工了一种涡流工具。通过Fluent数值模拟与环道试验分析不同气液相折算速度入口条件对涡流工具排液效果的影响,并对涡流工具的工作效果进行评价。结果表明:安装涡流工具后,上倾管内液相回流及底部积液现象有所缓解,上倾管内维持环状流流型,持液率有所下降。涡流工具的排液降压能力与气液相折算速度、管路倾角有关。在倾角一定的情况下,气相折算速度越大,涡流工具的排液降压能力越强;在相同气、液相折算速度入口条件下,管路倾角(0°~45°)越小,涡流工具的排液降压效果越好。研究成果可为指导涡流排液技术的现场应用提供理论依据。
        In order to solve the safety issues caused by ground occupation of pipelines with corrosion defects, a new type of vortex tool was designed and manufactured in order to remove the liquid loading in hilly-terrain wet gas pipelines. The effects of the inlet conditions of different gas and liquid superficial velocities on the drainage effectiveness of the vortex tool were analyzed by means of Fluent numerical simulation and test, and the working efficiency of the vortex tool was evaluated. It is shown that after the vortex tool is installed, the liquid backflow and bottom liquid loading in the up-dip pipe is relieved to some extent, annular flow is maintained in the up-dip pipe and the liquid holdup is reduced. The drainage and depressurization capacity of the vortex tool depends on the gas and liquid superficial velocity and the pipe inclination angle. When the inclination angle is constant, the drainage and depressurization capacity of the vortex tool increases with the increase of gas superficial velocity. When the inlet condition of gas and liquid superficial velocity is constant, the smaller the pipe inclination angle is(0°-45°), the better the drainage and depressurization efficiency of the vortex tool is. The research results provide theory basis for guiding the site application of vortex drainage technology.
引文
[1]李玉浩.变地形湿气管线积液分布规律及监测技术研究[D].青岛:中国石油大学(华东),2015:3-10.LI Y H.Investigation on liquid loading distribution and monitoring technology in hilly-terrain wet gas pipelines[D].Qingdao:China University of Petroleum(East China),2015:3-10.
    [2]李玉浩,曹学文,梁法春,等.多起伏湿气集输管线工艺计算方法优选[J].天然气工业,2013,33(8):114-118.LI Y H,CAO X W,LIANG F C,et al.Optimal selection of the calculation method for the flow process in hilly-terrain and low liquid holdup gathering pipelines[J].Natural Gas Industry,2013,33(8):114-118.
    [3]唱永磊.湿气管线积液与清管数值模拟研究[D].青岛:中国石油大学(华东),2014:6-16.CHANG Y L.The simulation study on liquid inventory and pigging in condensate gas pipeline[D].Qingdao:China University of Petroleum(East China),2014:6-16.
    [4]刘晓倩,李玉星,李顺丽,等.起伏湿气管道持液率分布规律及临界倾角模型[J].油气储运,2017,36(2):177-184.LIU X Q,LI Y X,LI S L,et al.Liquid holdup distribution laws and critical inclination angle model of undulating wet gas pipelines[J].Oil&Gas Storage and Transportation,2017,36(2):177-184.
    [5]王妍艽,林宗虎.丘陵地形对油气两相流流动特性影响的实验研究[C].北京:中国科学技术协会,2000:27-30.WANG Y P,LIN Z H.Experimental study on the effects on characteristics of two-phase flow of oil and gas in hilly terrain[C].Beijing:China Association for Science and Technology,2000:27-30.
    [6]李国平,刘兵,鲍旭晨,等.天然气管道的减阻与天然气减阻剂[J].油气储运,2008,27(3):15-21.LI G P,LIU B,BAO X C,et al.Drag reduction of natural gas pipeline and natural gas drag reducer[J].Oil&Gas Storage and Transportation,2008,27(3):15-21.
    [7]高李.起伏集气管道积液清除工具设计及机理研究[D].成都:西南石油大学,2014:8-13.GAO L.Design and mechanism study of liquid-loading clearance tool for fluctuating gas pipeline[D].Chengdu:Southwest Petroleum University,2014:8-13.
    [8]解永刚,胡均志,周继勇,等.子洲气田西干线积液量计算及药剂排液工艺技术[J].天然气工业,2014,34(7):98-103.XIE Y G,HU J Z,ZHOU J Y,et al.Calculation of pipeline effusion quantity and foam discharging technologies in the West Trunk Line I of the Zizhou Gas Field,Ordos Basin[J].Natural Gas Industry,2014,34(7):98-103.
    [9]刘凯,孙丽艳.涡流工具排水采气技术研究[J].石油机械,2017,45(9):87-91.LIU K,SUN L Y.Research on water drainage and gas recovery technology by vortex tool[J].China Petroleum Machinery,2017,45(9):87-91.
    [10]马勇,刘培林,陈文峰.深水海管并联集输系统段塞联合接收技术[J].油气储运,2017,36(7):843-848.MA Y,LIU P L,CHEN W F.Joint slug receiving technology for parallel gathering system of deepwater pipeline[J].Oil&Gas Storage and Transportation,2017,36(7):843-848.
    [11]邵乐.低压低产气井涡流工具优化设计研究[D].西安:西安石油大学,2015:11-15.SHAO L.Research of optimization design of vortex tool in low pressure and low production gas well[D].Xi'an:Xi'an Shiyou University,2015:11-15.
    [12]陈德春,姚亚,韩昊,等.气井涡流携液机理和携液效率数值模拟研究[J].石油机械,2015,43(9):91-94.CHEN D C,YAO Y,HAN H,et al.Numerical simulation on fluid-carrying mechanism and efficiency of vortex flow in gas wells[J].China Petroleum Machinery,2015,43(9):91-94.
    [13]李隽,李楠,李佳宜,等.涡流排水采气技术数值模拟研究[J].石油钻采工艺,2013,35(6):65-68.LI J,LI N,LI J Y,et al.Numerical simulation research on eddy current drainage gas recovery technology[J].Oil Drilling&Production Technology,2013,35(6):65-68.
    [14]CAZAN R,AIDUN C K.Experimental investigation of the swirling flow and the helical vortices induced by a twisted tape inside a circular pipe[J].Physics of Fluids,2013,35(6):65-68.
    [15]张伟.海底湿气管道段塞流捕集器容积的计算方法[J].油气储运,2017,36(9):1083-1088.ZHANG W.A new method for calculating the volume of slug catcher at the terminal of submarine wet gas pipeline slug catcher[J].Oil&Gas Storage and Transportation,2017,36(9):1083-1088.
    [16]杨涛,余淑明,杨桦,等.气井涡流排水采气新技术及其应用[J].天然气工业,2012,32(8):63-66.YANG T,YU S M,YANG H,et al.A new technology of vortex dewatering gas recovery in gas wells and its application[J].Natural Gas Industry,2012,32(8):63-66.
    [17]杨树人,庞博学,刘丽丽.天然气井应用涡流工具排水采气的流场分析[J].石油矿场机械,2014,43(10):13-16.YANG S R,PANG B X,LIU L L.Flow field analysis about application of vortex tools in process of gas well drainage[J].Oil Field Equipment,2014,43(10):13-16.
    [18]方召君,梁法春,谢振强,等.基于离心法引发的气液两相环状流的数值模拟及流量测量研究[J].科学技术与工程,2017,17(2):1-4.FANG Z J,LIANG F C,XIE Z Q,et al.Gas-liquid two-phase annular flow numerical simulation and flow rate measurement based on centrifuge method[J].Science Technology and Engineering,2017,17(2):1-4.
    [19]CHANG S W,YANG T L.Forced convective flow and heat transfer of upward cocurrent air-water slug flow in vertical plain and swirl tubes[J].Experimental Thermal&Fluid Science,2009,33(7):1087-1099.
    [20]LI G Z,YAO Y D,ZHANG R L.An improved model for the prediction of liquid loading in gas wells[J].Journal of Natural Gas Science&Engineering,2016,32:198-204.
    [21]LIU W,BAI B.Swirl decay in the gas-liquid two-phase swirling flow inside a circular straight pipe[J].Experimental Thermal&Fluid Science,2015,68:187-195.
    [22]陈德春,姚亚,韩昊,等.气井涡流排液采气工具有效作用长度[J].断块油气田,2016,23(4):537-540.CHEN D C,YAO Y,HAN H,et al.Effective length of vortex tools for liquid discharge in gas wells[J].Fault-Block Oil&Gas Field,2016,23(4):537-540.
    [23]陈德春,韩昊,姚亚,等.气井涡流工具作用效果分析与临界携液流量实验研究[J].天然气地球科学,2015,26(11):2137-2141.CHEN D C,HAN H,YAO Y,et al.An experimental study on the effect of the vortex tool and its influence on critical velocity[J].Natural Gas Geoscience,2015,26(11):2137-2141.
    [24]赵安,韩云峰,张宏鑫,等.气液两相流段塞流持气率快关阀法优化设计[J].化工学报,2016,67(4):1159-1168.ZHAO A,HAN Y F,ZHANG H X,et al.Optimal design for measuring gas holdup in gas-liquid two-phase slug flow using quick closing valve method[J].CIESC Journal,2016,67(4):1159-1168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700