用户名: 密码: 验证码:
考虑弯曲刚度的高压海缆敷设受力分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:TENSION ANALYSIS OF HIGH VOLTAGE SUBMARINE CABLE LAYING CONSIDERING BENDING STIFFNESS
  • 作者:曹淑刚 ; 张吉 ; 孙小钎 ; 梁鹏
  • 英文作者:Cao Shugang;Zhang Ji;Sun Xiaoqian;Liang Peng;Zhong Neng Power-tech Development Co.,Ltd;Guodian New Energy Technology Research Institute;Bohai Oilfield Research Institute of Tianjin Branch of CNOOC Ltd.;
  • 关键词:海底电缆 ; 海缆敷设 ; 弯曲刚度 ; 敷缆船 ; 受力分析
  • 英文关键词:submarine cables;;electric cable laying;;bending stiffness;;cable ships;;tension analysis
  • 中文刊名:太阳能学报
  • 英文刊名:Acta Energiae Solaris Sinica
  • 机构:中能电力科技开发有限公司;国电新能源技术研究院;中海石油有限公司天津分公司渤海石油研究院;
  • 出版日期:2019-10-28
  • 出版单位:太阳能学报
  • 年:2019
  • 期:10
  • 基金:中国国电集团公司科技项目
  • 语种:中文;
  • 页:315-322
  • 页数:8
  • CN:11-2082/TK
  • ISSN:0254-0096
  • 分类号:P756.1
摘要
敷设过程中的海缆进行动力学分析,得出考虑弯曲刚度的动力学微分方程,借助Orcaflex软件分析弯曲刚度、船舶运动、入水角和海床刚度对海缆运动、张力和曲率的影响。通过研究发现:随着弯曲刚度的增大,海缆的1阶频率逐渐增大,最大有效张力和曲率逐渐减小;海缆最大有效张力发生在海缆上端张紧器处,最大曲率发生在海缆离开拖缆架处;海缆敷设时船舶运动影响大于波浪的影响,船舶垂荡运动对海缆的有效张力影响较大,对曲率影响较小;随着海缆入水角的增大,海缆的有效张力减小,曲率增大;随着海床刚度的增大,海缆在触地段处有效张力逐渐减小。
        The kinematic differential equation considering the bending stiffness is obtained by dynamic analysis on the submarine cable laying. The effects of bending stiffness,ship motion,water entry angle and seabed stiffness on cable motion, tension and curvature are analyzed using Orcaflex software. The results show that the first order frequency of submarine cable increases with the bending stiffness increasing,but the maximum effective tension and curvature decreases. The maximum effective tension of the submarine cable occurs at the cable tensioner and the maximum curvature occurs when the submarine cable leaves the cable support. The impact of ship movement is greater than that of waves during the cable laying and the heave motion has a great influence on the effective tension but little effect on the curvature. With the increase of the water entry angle,the effective tension of the cable decreases, but the curvature increases. The effective tension of the submarine cable in the touchdown zone is gradually reduced when the seabed stiffness increases.
引文
[1]夏峰,陈凯,张永明.海底电力电缆铠装结构机械强度分析及设计[J].电线电缆,2011,(3):8—11.[1] Xia Feng,Chen Kai,Zhang Yongming. Analysis and design of the mechanic strength of the armoring in submarine power cables[J]. Electric Wire&Cable,2011,(3):8—11.
    [2] Love A E H. A Treatise on the mathematical theory of elasticity(4th ed.)[M]. Dover, New York; Dover Publications,1944.
    [3] Phillips J W,Costello G A. Contact stresses in twisted wire cables[J]. Journal of the Engineering Mechanics Division,1973,99:331—341.
    [4] Witz J A,Tan Z. On the axial-torsional structural behaviour of flexible pipes, umbilicals and marine cables[J]. Marine Structures,1992,5(2-3):205—227.
    [5] Le Clair R A,Costello G A,Leclair R A,et al. Axial,bending and torsional loading of a strand with friction[J]. Journal of Offshore Mechanics&Arctic Engineering,1988,110(1):38—42.
    [6] Huang N C. Finite extension of an elastic strand with a central core[J]. Journal of Applied Mechanics,1978,45(4):852—858.
    [7] Yang N,Jeng D-S,Zhou X L. Tension analysis of submarine cables during laying operations[J]. Open Civil Engineering Journal,2013,7(1):282—291.
    [8] Wang Yuanhui,Bian Xinqian,Zhang Xiaoyun,et al.A study on the influence of cable tension on the movement of cable laying ship[A]. Oceans 2010 MTS/IEEE Seattle[C],Seattle,WA,USA,2010.
    [9] Bouaanani N,Ighouba M. A novel scheme for large deflection analysis of suspended cables made of linear or nonlinear elastic materials[J]. Advances in Engineering Software,2011,42(12):1009—1019.
    [10] Vairo G,Montassar S. Mechanical modelling of stays under thermal loads[J]. Lecture Notes in Applied&Computational Mechanics,2012,61(61):481—498.
    [11]杨宁.海底缆线在敷设过程中的张力分析[D].上海:上海交通大学,2015.[11] Yang Ning. Tension anlysis of submarine cables during laying operations[D]. Shanghai:Shanghai Jiao Tong University,2015.
    [12]张太佶,胡晓为.海底电缆在敷设中的受力分析[J].船舶,2009,20(3):15—20.[12] Zhang Taiji,Hu Xiaowei. Tension analysis in submarine cable laying[J]. Ship&Boat,2009,20(3):15—20.
    [13]柯超,王瑛剑,张鹏杨.基于悬链线模型的深水海光缆敷设技术研究[J].通信技术,2016,49(8):1104—1108.[13] Ke Chao,Wang Yingjian,Zhang Pengyang. Technical research of deep-sea fiber cable deployment based on the catenary model[J]. Communications Technology,2016,49(8):1104—1108.
    [14]刘兵.海上风电场工程220 kV海底电缆敷设施工简介[J].中国工程咨询,2016,(5):60—62.[14] Liu Bing. Construction of 220 kV submarine cable for offshore wind farm project[J]. Chinese Consulting Engineers,2016,(5):60—62.
    [15]沈光.基于电缆转盘和DP系统的海缆敷埋施工技术及应用[J].中国水运月刊,2016,16(7月/下半月刊):293—295.[15] Shen Guang. Construction technology and application of submarine cable laying based on cable carousel and DP system[J]. China Water Transport, 2016, 16(Jul.Semimonthly/Second Half of the Month):293—295.
    [16]李兢.海底光缆力学特性有限元分析[D].武汉:武汉理工大学,2009.[16] Li Jing. Finite element analysis of submarine cable mechanical characteristics[D]. Wuhan:Wuhan University of Technology,2009.
    [17] Knapp R H. Torque and stress balanced design of helically armored cables[J]. Journal of Engineering for Industry,1981,103(1):61—66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700