用户名: 密码: 验证码:
内蒙古呼扎盖吐钼矿床成矿流体特征及成矿机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The characteristics of ore-forming fluid and mineralization mechanism in the Huzhagaitu porphyry Mo deposit, Inner Mongolia
  • 作者:刘瑞斌 ; 柳振江 ; 宓奎峰 ; 李春风 ; 王建平
  • 英文作者:LIU Ruibin;LIU Zhenjiang;MI Kuifeng;LI Chunfeng;WANG Jianping;Institute of Geology, Chinese Academy of Geological Sciences;School of Earth and Space Sciences, Peking University;Department of Geology and Environmental Engineering, Shanxi Institute of Technology;School of Earth Sciences and Resources, China University of Geology;Development and Research Center,CGS;Beijing Research Institute of Chemical Engineering and Metallurgy,CNNC;
  • 关键词:呼扎盖吐 ; 斑岩型钼矿床 ; 流体包裹体 ; 成矿流体 ; 流体沸腾
  • 英文关键词:Huzhagaitu;;porphyry molybdenum deposit;;fluid inclusions;;ore-forming fluid;;fluid boiling
  • 中文刊名:地质学报
  • 英文刊名:Acta Geologica Sinica
  • 机构:中国地质科学院地质研究所;北京大学地球与空间科学学院;山西工程技术学院地质与环境工程系;中国地质大学北京地球科学与资源学院;中国地质调查局发展研究中心;核工业北京化工冶金研究院;
  • 出版日期:2019-09-15
  • 出版单位:地质学报
  • 年:2019
  • 期:09
  • 基金:中国地质调查局地质调查项目(编号1212011220923);; 山西省煤基重大专项(编号MC2016-02);; 山西工程技术学院校级科研启动项目(编号KYQD-02);; 矿物岩石学应用型课程开发与建设项目(编号2017101722)联合资助成果
  • 语种:中文;
  • 页:226-243
  • 页数:18
  • CN:11-1951/P
  • ISSN:0001-5717
  • 分类号:P618.65
摘要
内蒙古呼扎盖吐钼矿床是得尔布干成矿带上新发现的一座斑岩型钼矿床,钼矿体分布在燕山早期花岗闪长岩岩体内及其流纹岩接触带中,矿床以辉钼矿化和黄铁矿化为主,伴随有铅锌矿化和少量的黄铜矿化。成矿过程主要分为4个阶段:硅化阶段、石英-辉钼矿阶段、石英-多金属硫化物阶段和石英-方解石阶段。流体包裹体可分为富液相包裹体、富气相包裹体、含子矿物的多相包裹体和含CO_2的三相包裹体4种类型。以主成矿阶段为研究重点,对不同成矿阶段(Ⅱ→Ⅳ阶段)矿脉中石英/方解石中的包裹体进行了显微测温和激光拉曼探针分析。结果显示:石英-辉钼矿阶段,包裹体均一温度主要集中在280~400℃之间,盐度变化范围在2.57%~51.68%。该阶段富气相包裹体、含子矿物的多相包裹体和含CO_2的三相包裹体共存,L型包裹体液相成分主要为H_2O-NaCl,V型包裹体气相成分除H_2O为主外,部分还含有CO_2,含石盐子晶的三相包裹体,检测到不透明子矿物黄铜矿的峰值。发育铅锌矿化和黄铜矿化的石英-多金属硫化物阶段,包裹体均一温度集中在180~280℃之间,盐度变化范围为0.18%~9.73%。成矿晚期石英-方解石脉中仅发育L型的气-液两相流体包裹体,均一温度集中在140~240℃之间,盐度变化范围为0.35%~7.17%。结合最新研究成果,本文认为该矿床初始流体是中等盐度和密度的岩浆流体,在主成矿阶段由于压力释放发生流体沸腾作用,成矿流体系统的物理化学条件和氧化-还原环境发生骤变,导致辉钼矿和其他硫化物等成矿物质在脉状裂隙中发生卸载沉淀。
        The Huzhagaitu molybdenum deposit is a newly discovered porphyry deposit in the middle segment of the Derbugan metallogenic belt in Inner Mongolia. The molybdenum orebodies are mainly hosted within the Early Yanshan granodiorite, and its contact zone with rhyolite. The deposit is dominated by molybdenum mineralization and pyrite mineralization, accompanied by lead-zinc mineralization and a small amount of copper mineralization. The ore-forming process can be divided into four stages: silicification stage, quartz-molybdenum stage, quartz-polymetallic sulphide stage, and quartz-calcite stage. There are four types of fluid inclusions: liquid-rich phase inclusions, vapor-rich phase inclusions, multiphase inclusions including daughter minerals and CO_2-bearing three-phase inclusions. With the main mineralization stage as the focus of our research, this study carried out microscopic temperature measurement and laser Raman microprobe analysis for the inclusions in quartz or calcite in different mineralization stages(stage II to IV). The results show that the homogenization temperatures of the inclusions in the quartz-molybdenum-pyrite stage are mainly concentrated between 280℃ and 400℃, and the salinities vary from 2.57% to 51.68%. In this stage, vapor-rich phase inclusions and multiphase inclusions including daughter minerals coexist with CO_2-bearing three-phase inclusions. The liquid phase composition of L-type inclusions is mainly H_2O-NaCl. The gas phase composition of V-type inclusions is mainly H_2O, and some of them also contain CO_2. Characteristic peak of laser Raman shift of daughter mineral chalcopyrite was detected in halite-bearing three phase inclusions. In the quartz-pyrite stage with lead-zinc mineralization and chalcopyrite mineralization, the homogenization temperatures of the inclusions are concentrated between 180℃ and 280℃, and the salinities vary from 0.18% to 9.73%. In late stage, only L-type inclusions occur in quartz-calcite veins, with the homogenization temperatures mainly ranging between 140℃ and 240℃, salinities varying from 0.35% to 7.17%. Combined with the latest research results, this paper suggests that the initial fluid of the deposit was magmatic fluid characterized by medium salinity and medium density. In the main stage of mineralization, the boiling of ore-forming fluid due to pressure release resulted in sudden change of the physical and chemical conditions of the ore-forming fluid system and the oxidation-reduction environment, causing the unloading and precipitation of molybdenite and other sulfide minerals in vein fractures.
引文
Bodnar R J.1993.Revised equation and table for determining the freezing point depression of H2O-NaCl solutions.Geochimica et Cosmochimica Acta,57(3):683~684.
    Brown P E.1989.Flincor:A microcomputer program for the reduction and investigation of fluid-inclusion data.American Mineralogist,74(11~12):1390~1393.
    Cao Xiaoyun.1989.Solubility of molybdenite and the transport of molybdenum in hydrothermal solutions.Doctor dissertation of Iowa State University,1~103.
    Chen Yanjing,Ni Pei,Fan Hongrui,F Pirajno,Lai Yong,Su Wenchao,Zhang Hui.2007.Diagnostic fluid inclusions of different types hydrothermal gold deposit.Acta Petrologica Sinica,23(09):2085~2108 (in Chinese with English abstract).
    Chen Yanjing,Zhang Cheng,Li Nuo,Yang Yongfei,Deng Ke.2012.Geology of the Mo deposits in northeast China.Journal of Jilin University(Earth Science Edition),42(5):1221~1268 (in Chinese with English abstract).
    Chen Zhensheng,Zhang Ligang.1992.Hydrogen and oxygen isotope fractionation mechanism in the hydrothermal system and its geologic significance.Acta Geologica Sinica,66(02):158~169 (in Chinese with English abstract).
    Chen Zhensheng.1997.Oxygen and hydrogen isotope behavior in hydrothermal water-rock interaction process.Geotectonica et Metallogenia,21(01):51~61(in Chinese with English abstract).
    Chen Zhiguang,Zhang Lianchang,Lu Baizhi,Li Zhanlong,Wu Huaying,Xiang Peng and Huang Shiwu.2010.Geochronology and geochemistry of the Taipingchuan copper-molybdenum deposit in Inner Mongolia,and its geological significances.Acta Petrologica Sinica,26(5):1437~1449 (in Chinese with English abstract).
    Chi Guoxiang,Lai Jianqing.2009.Roles of fluid inclusions in study of mineral deposits.Mineral Deposits,28(06):850~855 (in Chinese with English abstract).
    Chi Guoxiang,Xue Chunji.2011.Principles,methods and applications of hydrodynamic studies of mineralization.Earth Science Frontiers,18(05):1~18 (in Chinese with English abstract).
    Clayton R N,O’Neil J R,Mayeda T K.1972.Oxygen isotope exchange between quartz and water.Journal of Geophysical Research,77(17):3057~3067.
    Collins P L F.1979.Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity.Economic Geology,74(6):1435~1444.
    Duan Mingxin,Ren Yunsheng,Guo Hongyu,Wang Bochao,Zhao Xidong,Cai Yanlong.2017.Ore-Forming Fluids and Genesis of Qiyimuchang Lead-zinc Deposit in Erguna Area,Inner Mongolia.Geology and Resources,26(06):557~563 (in Chinese with English abstract).
    Duan Zhenhao,Sun Rui,Zhu Chen,Chou I-Ming.2006.An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+,K+,Ca2+,Mg2+,Cl-,and SO42-.Marine Chemistry,98(2~4):131~139.
    Fei Hongcai,Xiao Rongge.2002.Ore-forming fluid evolution and metallogenetic physical chemistry.Bulletin of Mineralogy,Petrology and Geochemistry,21(02):139~144 (in Chinese with English abstract).
    Hall D L,Sterner S M,Bodnar R J.1988.Freezing point depression of H2O-NaCl solutions.Economic Geology,83:197~202.
    He Shuyue,Li Yulong,Chen Jing,Xu Qinglin,Wang Yadong,Bai Zonghai,Shu Shulan.2017.Characteristics of ore-forming fluid and metallogenic mechanism of Halongxiuma porphyry molybdenum deposit in the eastern part of East Kunlun.Journal of Mineralogy and Petrology,37(03):22~30 (in Chinese with English abstract).
    Huang Fan,Chen Yuchuan,Wang Denghong,Yuan Zhongxin,Chen Zhenghui.2011.A discussion on the major molybdenum ore concentration areas in China and their resource potential.Geology in China,38(05):1111~1134 (in Chinese with English abstract).
    Huang Shiwu,Zhang Lianchang,Li Keqing,Chen Zhiguang,Wu Huaying,Xiang Peng,Zhang Xiaojing.2010.CH4-containing fluid inclusion study of the Taipingchuan porphyry Cu-Mo deposit,Inner Mongolia.Acta Geologica Sinica,26(05):1386~1396 (in Chinese with English abstract).
    Jian Wei,Liu Wei,Shi Lihong.2010.Advances in study of porphyry molybdenum deposits.Mineral Deposits,29(02):308~316 (in Chinese with English abstract).
    Kang Yongjian,Xiang Anping,She Hongquan,Sun Yuliang,Yang Wensheng.2016.The Characteristics of Ore-forming Fluids and Mineralization Mechanism in the Badaguan Porphyry Cu-Mo Deposit,Inner Mongolia,NE China.Acta Geologica Sinica,90(08):1778~1797 (in Chinese with English abstract).
    Kudrin A V.1989.Behavior of Mo in aqueous NaCl and KCl solutions at 300~450℃.Geochemistry International,26(8):87~99.
    Mao Shide,Duan Zhenhao.2008.The P,V,T,x properties of binary aqueous chloride solutions up to T= 573 K and 100 MPa.The Journal of Chemical Thermodynamics,40(7):1046~1063.
    Mao Shide,Duan Zhenhao,Zhang Dehui,Shi Lanlan,Chen Yali,Li Jing.2011.Thermodynamic modeling of binary CH4-H2O fluid inclusions.Geochimica et Cosmochimica Acta,75(20):5892~5902.
    Mi Kuifeng,Liu Zhenjiang,Li Chunfeng,Liu Ruibin,Wang Jianping,Peng Runmin.2017.Origin of the Badaguan porphyry Cu-Mo deposit,Inner Mongolia,northeast China:Constraints from geology,isotope geochemistry and geochronology.Ore Geology Reviews,81:154~172.
    Mi Kuifeng,Liu Zhenjiang,Liu Ruibin,Li Chunfeng,Wang Jianping,Peng Runmin.2018.U-Pb zircon,geochemical and Sr-Nd-Hf isotopic constraints on age and origin of the intrusions from Wunugetushan porphyry deposit,Northeast China:implication for Triassic-Jurassic Cu-Mo mineralization in Mongolia-Erguna metallogenic belt.International Geology Review,60(4):496~512.
    Leng Chengbiao,Zhang Xingchun,Wang Shouxu,Qin Chaojian,Wu Kongwen,Ren Tao.2009.Advances of Researches on the Evolution of Ore-forming Fluids and the Vapor Transport of Metals in Magmatic—Hydrothermal Systems.Geological Review,55(01):100~112 (in Chinese with English abstract).
    Li Nuo,Chen Yanjing,Lai Yong,Li Wenbo.2007.Fluid inclusion study of the Wunugetushan porphyry Cu-Mo deposit,Inner Mongolia.Acta Petrologica Sinica,23(09):2177~2188 (in Chinese with English abstract).
    Liu Bin,Duan Guangxian.1987.The density and isochoric formulae for NaCl-H2O fluid inclusions and their applications.Acta Mineralogica Sinica,7(04):345~352 (in Chinese with English abstract).
    Liu Bin.2001.Density and Isochoric Formulae for NaCl-H2O Inclusions with Medium and High Salinity and Their Applications.Geological Review,47(06):617~622 (in Chinese with English abstract).
    Liu Li,Zeng Qingdong,Liu Jianming,Duan Xiaoxia,Sun Shouke,Zhang Lianchang.2012.Characteristics of fluid inclusions from the Laojiagou porphyry Mo deposit in the Xilamulun metallogenic belt,Inner Mongolia and their geological significance.Geology and Exploration,48(04):663~676 (in Chinese with English abstract).
    Lu Huanzhang,Fan Hongrui,Ni Pei,Ou Guangxi,Shen Kun,Zhang Wenhuai.2004.Fluid inclusions.Beijing:Science Press,1~274 (in Chinese with English abstract).
    Lu Huanzhang,Bi Xianwu,Wang Die and Shan Qiang.2016.Ore-forming fluids of porphy copper (molybdenum-gold) deposit.Mineral Deposits,35(05):933~952 (in Chinese with English abstract).
    Rempel K U,Migdisov A A,Williams-Jones A E.2006.The solubility and speciation of molybdenum in water vapour at elevated temperatures and pressures:Implications for oregenesis.Geochimica et Cosmochimica Acta,70(3):687~696.
    She Hongquan,Li Honghong,Li Jinwen,Zhao Shibao,Tan Gang,Zhang Dehui,Jin Jun,Dong Yingjun,Feng Chengyou.2009.The Metallogenetical Characteristics and Prospecting Direction of the Copper-Lead-Zinc Polymetal Deposits in the Northern-Central Daxing’ anling Mountain,Inner Monglia.Acta Geologica Sinica,83(10):1456~1472 (in Chinese with English abstract).
    Steele-MacInnis M,Lecumberri-Sanchez P,Bodnar R J.2012.HOKIEFLINCS-H2O-NACL:A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O-NaCl.Computers & Geosciences,49:334~337.
    Sun Yan,Liu Jianming,Zeng Qingdong.2012.An approach to the metallogenic mechanism of porphyry copper(molybdenum) deposits and porphyry molybdenum(copper) deposits:Influence of evolving process of ore-forming fluids and tectonic setting.Earth Science Frontiers,19(06):179~193 (in Chinese with English abstract).
    Tan Gang,She Hongquan,Yin Jianping,Yang Yuncheng,Li Jinwen,Xiang Anping,Zhang Bin.2013.Source and evolution of ore-fluid in Wunugetushan large Cu-Mo deposit,Inner Mongolia:evidence from fluid inclusions and hydrogen and oxygen isotopic geochemistry.Global Geology,32(03):463~482 (in Chinese with English abstract).
    Tang Pan,Chen Yuchuan,Tang Juxing,Zheng Wenbao,Leng Qiufeng,Lin Bin.2017.A study of fluid inclusions from Lakang’e porphyry Cu-Mo deposit in Tibet.Mineral Deposits,36(01):68~82 (in Chinese with English abstract).
    Ulrich T,Guenther D,Heinrich C A.1999.Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits.Nature,399(6737):676~679.
    Ulrich T,Mavrogenes J.2008.An experimental study of the solubility of molybdenum in H2O and KCl-H2O solutions from 500℃ to 800℃,and 150 to 300MPa.Geochimica et Cosmochimica Acta,72(9):2316~2330.
    Wang Jianguo,Zhang Jing,Wang Shengwen,Zhang Da,Qi Xiaojun,Wu Ganguo,Zhao Pizhong.2009.Characteristics of fluid inclusions and metallogenetic geodynamical setting of the Taipinggou Mo deposit in Inner Mongolia,China.Acta Petrologica Sinica,25(10):2621~2630 (in Chinese with English abstract).
    Wang Pin.2015.Comparative study of porphyry Mo mineralization in continental collision and magmatic arc-insights from Yaochong and Diyanqinamu porphyry Mo depsoits.Doctor dissertation of Graduate University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry),1~217 (in Chinese with English abstract).
    Wang Xi,Duan Mingxin,Ren Yunsheng,Hou Zhaoshuo,Sun Deyou,Hao Yujie.2016.Characteristics of Fluid Inclusions and Mineralization Age of Badaguan Cu-Mo Deposit in Erguna Area,Inner Mongolia.Journal of Jilin University(Earth Science Edition),46(05):1354~1367 (in Chinese with English abstract).
    Webster J D.1997.Exsolution of magmatic volatile phases from Cl-enriched mineralizing granitic magmas and implications for ore metal transport.Geochimica et Cosmochimica Acta,61(5):1017~1029.
    Wu Guang.2006.Metallogenic Setting and Metallogenesis of Nonferrous-precious Metal in Northern Da Hinggan Moutain.Doctor dissertation of Jilin University,1~202 (in Chinese with English abstract).
    Xiao Rongge,Yuan Zhenlei,Liu Jingdang,Fei Hongcai,Ge Zhenhua,Zhang Mingyan.2004.The formation and evolution of regional ore-forming fluid.Earth Science Frontiers,11(02):461~469 (in Chinese with English abstract).
    Xiao Rongge,Zhang Zongheng,Chen Huiquan,Zhang Hancheng.2001.Types of geological fluids and ore-forming fluid.Earth Science Frontiers,8(04):245~251 (in Chinese with English abstract).
    Xiong Suofei,He Mouchun,Yao Shuzhen,Cui Yubao,Hu Xinlu,Chen Bin.2014.Compositions and Microthermometry of Fluid Inclusions of Chalukou Porphyry Mo deposit from Great Xing’an Range:Implications for Ore Genesis.Earth Science—Journal of China University of Geosciences,39(07):820~836 (in Chinese with English abstract).
    Xue Chunji,Qi Sijing,Kui Heming.2006.Basic Ore Deposit Geology.Beijing:Geological Publishing House,75~114 (in Chinese with English abstract).
    Yokoi K,Matsubayashi N,Miyanaga T,Watanabe I,Ikeda S.1993.Studies on the structure of molybdenum(VI) in acidic solution by XANES and EXAFS.Polyhedron,12(8):911~914.
    Zeng Weishun,Zhou Jianbo,Dong Ce,Cao Jialin and Wang Bin.2014.Subduction record of Mongol-Okhotsk Ocean:Constrains from Badaguan metamorphic complexes in the Erguna massif,NE China.Acta Petrologica Sinica,30(07):1948~1960 (in Chinese with English abstract).
    Zhang Dehui.1997.Geochemistry on boiling and mixing of fluids during the processes of hydrothermal deposits.Advance in earth science,12(6):546~552 (in Chinese with English abstract).
    Zhang Fujiang,Zhang Wanjun.2013.Characteristics of ore-forming intrusive rock and prospecting potential of the Huzhagaitu molybdenum deposit in Chen Barag Banner,Inner Mongolia.Western Resources,(6):115~116 (in Chinese with English abstract).
    Zhang Rongzhen.2015.Characteristics of ore-forming fluids and metallogenic depth estimation in the Shiyaogou porphyry Molybdenum deposit,Eastern Qinling.Master dissertation of China University of Geosciences in Beijing,1~64 (in Chinese with English abstract).
    Zhao Yan,Lv Junchao,Zhang Peng,Zhang Debao,Shen Xin,Bi Zhongwei.2018.Characteristics of Ore-Forming Fluids in the De’rbur Pb-Zn-Ag Deposit in the NW Great Hinggan Mountains and Its Significance.Acta Geologica Sinica,92(01):142~153 (in Chinese with English abstract).
    参考文献陈衍景,倪培,范宏瑞,F Pirajno,赖勇,苏文超,张辉.2007.不同类型热液金矿系统的流体包裹体特征.岩石学报,23(09):2085~2108.
    陈衍景,张成,李诺,杨永飞,邓轲.2012.中国东北钼矿床地质.吉林大学学报(地球科学版),42(5):1221~1268.
    陈振胜,张理刚.1992.热液体系氢、氧同位素分馏机制及其地质意义.地质学报,66(02):158~169.
    陈振胜.1997.热液体系水-岩作用过程中的氧氢同位素行为.大地构造与成矿学,21(01):51~61.
    陈志广,张连昌,卢百志,李占龙,吴华英,相鹏,黄世武.2010.内蒙古太平川铜钼矿成矿斑岩时代、地球化学及地质意义.岩石学报,26(5):1437~1449.
    池国祥,赖健清.2009.流体包裹体在矿床研究中的作用.矿床地质,28(06):850~855.
    池国祥,薛春纪.2011.成矿流体动力学的原理、研究方法及应用.地学前缘,18(05):1~18.
    段明新,任云生,郭宏宇,王博超,赵喜东,蔡艳龙.2017.内蒙古额尔古纳地区七一牧场铅锌矿床成矿流体特征及成因探讨.地质与资源,26(06):557~563.
    费红彩,肖荣阁.2002.成矿流体演化与成矿物理化学.矿物岩石地球化学通报,21(02):139~144.
    何书跃,李玉龙,陈静,许庆林,王亚栋,白宗海,舒树兰.2017.东昆仑东段哈陇休玛斑岩型钼矿成矿流体特征及成矿机制探讨.矿物岩石,37(03):22~30.
    黄凡,陈毓川,王登红,袁忠信,陈郑辉.2011.中国钼矿主要矿集区及其资源潜力探讨.中国地质,38(05):1111~1134.
    黄世武,张连昌,李克庆,陈志广,吴华英,相鹏,张晓静.2010.得尔布干成矿带太平川铜钼矿床含CH4流体包裹体研究.岩石学报,26(05):1386~1396.
    简伟,柳维,石黎红.2010.斑岩型钼矿床研究进展.矿床地质,29(02):308~316.
    康永建,向安平,佘宏全,孙宇亮,杨文生.2016.内蒙古八大关斑岩型Cu-Mo矿床成矿流体特征及成矿机制研究.地质学报,90(08):1778~1797.
    冷成彪,张兴春,王守旭,秦朝建,吴孔文,任涛.2009.岩浆-热液体系成矿流体演化及其金属元素气相迁移研究进展.地质论评,55(01):100~112.
    李诺,陈衍景,赖勇,李文博.2007.内蒙古乌努格吐山斑岩铜钼矿床流体包裹体研究.岩石学报,23(09):2177~2188.
    刘斌,段光贤.1987.NaCl-H2O溶液包裹体的密度式和等容式及其应用.矿物学报,7(04):345~352.
    刘斌.2001.中高盐度NaCl-H2O包裹体的密度式和等容式及其应用.地质论评,47(06):617~622.
    刘利,曾庆栋,刘建明,段晓侠,孙守恪,张连昌.2012.内蒙古西拉木伦成矿带劳家沟斑岩型钼矿流体包裹体特征及地质意义.地质与勘探,48(04):663~676.
    卢焕章,毕献武,王蝶,单强.2016.斑岩铜(钼-金)矿床的成矿流体.矿床地质,35(05):933~952.
    卢焕章,范宏瑞,倪培,欧光习,沈昆,张文淮.2004.流体包裹体.北京:科学出版社,1~274.
    佘宏全,李红红,李进文,赵士宝,谭刚,张德全,金俊,董英君,丰成友.2009.内蒙古大兴安岭中北段铜铅锌金银多金属矿床成矿规律与找矿方向.地质学报,83(10):1456~1472.
    孙燕,刘建明,曾庆栋.2012.斑岩型铜(钼)矿床和斑岩型钼(铜)矿床的形成机制探讨:流体演化及构造背景的影响.地学前缘,19(06):179~193.
    谭钢,佘宏全,印建平,杨郧城,李进文,向安平,张斌.2013.内蒙古乌奴格吐山大型铜钼矿床成矿流体来源及演化:流体包裹体及氢氧同位素地球化学证据.世界地质,32(03):463~482.
    唐攀,陈毓川,唐菊兴,郑文宝,冷秋锋,林彬.2017.西藏拉抗俄斑岩铜钼矿床流体包裹体研究.矿床地质,36(01):68~82.
    王建国,张静,王圣文,张达,祁小军,吴淦国,赵丕忠.2009.内蒙古太平沟钼矿床流体包裹体特征及成矿动力学背景.岩石学报,25(10):2621~2630.
    王玭.2015.大陆碰撞与岩浆弧背景斑岩钼矿对比研究——以姚冲和迪彦钦阿木钼矿床为例.中国科学院研究生院(广州地球化学研究所)博士学位论文,1~217.
    王晰,段明新,任云生,侯召硕,孙德有,郝宇杰.2016.内蒙古额尔古纳地区八大关铜钼矿床流体包裹体特征与成矿时代.吉林大学学报(地球科学版),46(05):1354~1367.
    武广.2006.大兴安岭北部区域成矿背景与有色、贵金属矿床成矿作用.吉林大学博士学位论文,1~202.
    肖荣阁,原振雷,刘敬党,费红彩,葛振华,张明燕.2004.区域成矿流体的形成与演化.地学前缘,11(02):461~469.
    肖荣阁,张宗恒,陈卉泉,张汉城.2001.地质流体自然类型与成矿流体类型.地学前缘,8(04):245~251.
    熊索菲,何谋惷,姚书振,崔玉宝,胡新露,陈斌.2014.大兴安岭岔路口斑岩钼矿床流体成分及成矿意义.地球科学(中国地质大学学报),39(07):820~836.
    薛春纪,祁思敬,隗合明.2006.基础矿床学.北京:地质出版社,75~114.
    曾维顺,周建波,董策,曹嘉麟,王斌.2014.蒙古-鄂霍茨克洋俯冲的记录:额尔古纳地区八大关变质杂岩的证据.岩石学报,30(07):1948~1960.
    张德会.1997.流体的沸腾和混合在热液成矿中的意义.地球科学进展,12(06):546~552.
    张福江,张万军.2013.内蒙古陈巴尔虎旗呼扎盖吐斑岩型钼矿控矿岩体特征及成矿远景.西部资源,(6):115~116.
    张荣臻.2015.东秦岭石窑沟斑岩型钼矿成矿流体研究及成矿深度估算.中国地质大学(北京)硕士学位论文,1~64.
    赵岩,吕骏超,张朋,张德宝,沈鑫,毕中伟.2018.大兴安岭北段得耳布尔铅锌银矿床成矿流体特征与意义.地质学报,92(01):142~153.
    ? 内蒙古地质工程有限责任公司.2016.内蒙古自治区陈巴尔虎旗呼扎盖吐矿区铜铅锌钼矿资源储量核实报告.
    ? 黑龙江省有色金属地质勘查局703队.2010.内蒙古自治区陈巴尔虎旗呼扎盖吐矿区钼矿勘探报告.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700