用户名: 密码: 验证码:
MOFs在光催化降解废水中有机污染物方面的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in photocatalytic degradation of organic pollutants in wastewater by metal-organic frameworks
  • 作者:刘兴燕 ; 熊成 ; 徐永港 ; 谭雨薇 ; 冯欢 ; 程亚玲 ; 陈盛明 ; 汪松
  • 英文作者:LIU Xing-yan;XIONG Cheng;XU Yong-gang;TAN Yu-wei;FENG Huan;CHENG Ya-ling;CHEN Sheng-ming;WANG Song;Chongqing Key Laboratory of Catalysis and New Environmental Materials,College of Environment and Resources,Chongqing Technology and Business University;
  • 关键词:金属-有机骨架材料 ; 有机污染物 ; 催化降解 ; 进展
  • 英文关键词:metal-organic frameworks;;organic pollutants;;photocatalytic degradation;;progress
  • 中文刊名:应用化工
  • 英文刊名:Applied Chemical Industry
  • 机构:重庆工商大学环境与资源学院催化与环境新材料重庆市重点实验室;
  • 出版日期:2018-11-05 13:10
  • 出版单位:应用化工
  • 年:2019
  • 期:01
  • 基金:重庆市科委科学技术研究项目(cstc2017jcyjAX0116,cstc2018jcyjAX0531);; 重庆市教委科学技术研究项目(KJ1706174);; 重庆工商大学高层次人才科研启动项目(1756002);重庆工商大学校内青年科研项目(1752015);重庆工商大学学生科技创新基金资助项目(179018)
  • 语种:中文;
  • 页:234-238
  • 页数:5
  • CN:61-1370/TQ
  • ISSN:1671-3206
  • 分类号:TQ426;X703
摘要
综述了近年来金属-有机骨架材料(MOFs)及其复合材料在光催化降解废水中的罗丹明B、亚甲基蓝等有机污染物方面的研究进展情况。指出了该材料在设计、合成等方面的相关策略,同时在光催化降解有机污染物方面表现出了优异的性能。最后提出了MOFs及其复合材料在光催化降解有机污染物方面的挑战和未来展望。
        The progress of the research on photocatalytic decontamination of wastewater containing organic pollutants such as Rhodamine B,methylene blue based on the metal-organic frameworks( MOFs) and their derivatives was reviewed in recent years. It was pointed out that the related strategies in design and synthesis,and the excellent properties in photocatalytic degradation of organic pollutants. Finally,the challenges and outlooks for organic pollutants decomposition by MOFs and their derivatives were suggested.
引文
[1] Chowdhary P,Raj A,Bharagava R N. Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental threats:A review[J]. Chemosphere,2018,194:229-246.
    [2] Nidheesh P V,Zhou M,Oturan M A. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes[J]. Chemosphere,2018,197:210-227.
    [3] Cheng M,Zeng G,Huang D,et al. Hydroxyl radicals based advanced oxidation processes(AOPs)for remediation of soils contaminated with organic compounds:A review[J].Chemical Engineering Journal,2016,284:582-598.
    [4] Du D,Qin J,Li S,et al. Recent advances in porous polyoxometalatebased metal-organic framework materials[J].Chemical Society Reviews,2014,43(13):4615-4632.
    [5] Wu Z,Yuan X,Zhang J,et al. Photocatalytic decontamination of wastewater containing organic dyes by metal-organic frameworks and their derivatives[J]. Chem Cat Chem,2017,9(1):41-64.
    [6] Bala S,Bhattacharya S,Goswami A,et al. Designing functional metal-organic frameworks by imparting a hexanuclear copper-based secondary building unit specific properties:structural correlation with magnetic and photocatalytic activity[J]. Crystal Growth&Design,2014,14(12):6391-6398.
    [7] Wei S,Wang J,Zhang C,et al. d7/d8Metal complexes constructed from 2,6-bis(2-benzimidazolyl)pyridyl or2,6-di-(pyrazol-3-yl)pyridine derivatives:synthesis,structure,characterization,and photocatalytic activity[J].Chem Plus Chem,2015,80(3):549-558.
    [8] Sun Q,Liu M,Li K,et al. Synthesis of Fe/M(M=Mn,Co,Ni)bimetallic metal organic frameworks and their catalytic activity for phenol degradation at mild conditions[J]. Inorganic Chemistry Frontiers,2017,4(1):144-153.
    [9] Mu X,Jiang J,Chao F,et al. Ligand modification of Ui O-66 with an unusual visible light photocatalytic behavior for Rh B degradation[J]. Dalton Transactions,2018,47(6):1895-1902.
    [10] Xu W,Ma L,Ke F,et al. Metal-organic frameworks MIL-88A hexagonal microrods as a new photocatalyst for efficient decolorization of methylene blue dye[J]. Dalton Transactions,2014,43(9):3792-3797.
    [11] Gao Y,Li S,Li Y,et al. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe)under visible LED light mediated by persulfate[J]. Applied Catalysis B:Environmental,2017,202:165-174.
    [12] Shen L,Wu W,Liang R,et al. Highly dispersed palladium nanoparticles anchored on Ui O-66(NH2)metal-organic framework as a reusable and dual functional visible-lightdriven photocatalyst[J]. Nanoscale,2013,5(19):9374-9382.
    [13] Zhao H,Qian L,Lv H,et al. Introduction of a Fe3O4core enhances the photocatalytic activity of MIL-100(Fe)with tunable shell thickness in the presence of H2O2[J]. Chem Cat Chem,2015,7(24):4148-4155.
    [14] Ding Y,Zhang X,Zhang N,et al. Visible-light driven Bi2S3@ZIF-8 core-shell heterostructure and synergistic photocatalysis mechanism[J]. Dalton Transactions,2018,47(3):684-692.
    [15] Sha Z,Sun J,Chan H,et al. Bismuth tungstate incorporated zirconium metal-organic framework composite with enhanced visible-light photocatalytic performance[J]. RSC Advances,2014,4(110):64977-64984.
    [16] Sha Z,Wu J. Enhanced visible-light photocatalytic performance of Bi OBr/Ui O-66(Zr)composite for dye degradation with the assistance of Ui O-66[J]. RSC Advances,2015,5(49):39592-39600.
    [17] Sha Z,Sun J,Chan H,et al. Enhanced photocatalytic activity of the Ag I/Ui O-66(Zr)composite for rhodamine B degradation under visible-light irradiation[J]. Chem Plus Chem,2015,80(8):1321-1328.
    [18] Sha Z,Chan H,Wu J. Ag2CO3/Ui O-66(Zr)composite with enhanced visible-light promoted photocatalytic activity for dye degradation[J]. Journal of Hazardous Materials,2015,299:132-140.
    [19] Gao S,Feng T,Feng C,et al. Novel visible-light-responsive Ag/Ag Cl@MIL-101 hybrid materials with synergistic photocatalytic activity[J]. Journal of Colloid and Interface Science,2016,466:284-290.
    [20] Liu Q,Zeng C,Ai L,et al. Boosting visible light photoreactivity of photoactive metal-organic framework:designed plasmonic Z-scheme Ag/Ag Cl@MIL-53-Fe[J]. Applied Catalysis B:Environmental,2018,224:38-45.
    [21] Kaur R,Vellingiri K,Kim K,et al. Efficient photocatalytic degradation of Rhodamine 6G with a quantum dot-metal organic framework nanocomposite[J]. Chemosphere,2016,154:620-627.
    [22] Kaur R,Rana A,Singh R K,et al. Efficient photocatalytic and photovoltaic applications with nanocomposites between Cd Te QDs and an NTU-9 MOF[J]. RSC Advances,2017,7(46):29015-29024.
    [23] Yuan X,Wang H,Wu Y,et al. One-pot self-assembly and photoreduction synthesis of silver nanoparticle-decorated reduced graphene oxide/MIL-125(Ti)photocatalyst with improved visible light photocatalytic activity[J]. Applied Organometallic Chemistry,2016,30(5):289-296.
    [24] Yang C,You X,Cheng J,et al. A novel visible-light-driven In-based MOF/graphene oxide composite photocatalyst with enhanced photocatalytic activity toward the degradation of amoxicillin[J]. Applied Catalysis B:Environmental,2017,200:673-680.
    [25] Guo D,Wen R,Liu M,et al. Facile fabrication of g-C3N4/MIL-53(Al)composite with enhanced photocatalytic activities under visible-light irradiation[J]. Applied Organometallic Chemistry,2015,29(10):690-697.
    [26] Huang J,Zhang X,Song H,et al. Protonated graphitic carbon nitride coated metal-organic frameworks with enhanced visible-light photocatalytic activity for contaminants degradation[J]. Applied Surface Science,2018,441:85-98.
    [27] Cui Z,Qi J,Xu X. PANI/CPs composite material,a new type of coordination polymer based composite material:fabrication and photocatalytic property study[J]. Inorganic Chemistry Communications,2013,35:260-264.
    [28] Xu X,Gao X,Lu T,et al. Hybrid material based on a coordination-complex modified polyoxometalate nanorod(CC/POMNR)and PPy:a new visible light activated and highly efficient photocatalyst[J]. Journal of Materials Chemistry A,2015,3(1):198-206.
    [29] He L,Li L,Wang T,et al. Fabrication of Au/Zn O nanoparticles derived from ZIF-8 with visible light photocatalytic hydrogen production and degradation dye activities[J].Dalton Transactions,2014,43(45):16981-16985.
    [30] Chen H,Shen K,Chen J,et al. Hollow-ZIFs-templated formation of Zn O@C-N-Co core-shell nanostructure for highly efficient pollutant photodegradation[J]. Journal of Materials Chemistry A,2017,5(20):9937-9945.
    [31] Xiong G,Wang Y,Sun Y,et al. Sphalerite Cu/Zn S nanoparticles derived from Cu/Zn-ZIF-8 for the photocatalytic degradation and adsorption of dyes[J]. European Journal of Inorganic Chemistry,2018(8):1038-1046.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700