用户名: 密码: 验证码:
川西冕宁木落寨碳酸岩型稀土矿床流体演化对成矿的制约:来自包裹体和稳定同位素的证据
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The evolution of ore-forming fluid constraints on mineralization of the Muluozhai carbonatite-related REE deposit in western Sichuan: Evidence from fluid inclusions and stable isotopes
  • 作者:郑旭 ; 刘琰 ; 欧阳怀 ; 付浩邦 ; 贾玉衡 ; 丁岩
  • 英文作者:ZHENG Xu;LIU Yan;OUYANGHuai;FU HaoBang;JIA YuHeng;DING Yan;State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences;MNR Key Laboratory of Deep-Earth Dynamics,Institute of Geology,Chinese Academy of Geological Sciences;College of Earth Science,Guilin University of Technology;The Wankaifeng Rare Earth Energy Company;
  • 关键词:流体包裹体 ; 稳定同位素 ; 木落寨 ; 碳酸岩型稀土矿
  • 英文关键词:Fluid inclusion;;Stable isotope;;Muluozhai;;Carbonatite-related REE deposit
  • 中文刊名:岩石学报
  • 英文刊名:Acta Petrologica Sinica
  • 机构:中国地质大学地质过程与矿产资源国家重点实验室(北京);自然资源部深地动力学重点实验室中国地质科学院地质研究所;桂林理工大学地球科学学院;四川万凯丰稀土能源有限公司;
  • 出版日期:2019-05-15
  • 出版单位:岩石学报
  • 年:2019
  • 期:05
  • 基金:国家重点基础研究发展计划“973”项目(2015CB452600);; 国家自然科学基金重大研究计划(9185527)和面上项目(41772044);; 中国地质科学院基本科研业务费(YYWF201705);; 自然资源部中国地质调查局地质调查项目(DD20190060);; 高等学校学科创新引智计划(B07011)联合资助
  • 语种:中文;
  • 页:91-108
  • 页数:18
  • CN:11-1922/P
  • ISSN:1000-0569
  • 分类号:P618.7;P588.245;P597
摘要
木落寨稀土矿床位于青藏高原东部,扬子克拉通西南缘,属于典型的碳酸岩型稀土矿床。与其他成矿过程复杂的碳酸岩型稀土矿床相比,该矿床具有完整而连续的流体演化过程,且几乎不受热液蚀变和后期构造-岩浆事件的影响,因此是研究碳酸岩型稀土矿床成矿过程的理想对象。本次研究结合详细的1∶5000矿区岩性-构造-蚀变-矿化野外地质调查和流体包裹体研究,将矿床形成过程划分为三期,即岩浆期、热液期和表生期。热液期作为主要的成矿期,又可细分为热液早阶段、热液中阶段和热液晚阶段三个阶段。对热液不同阶段的重晶石、萤石、石英和氟碳铈矿的流体包裹体研究表明,主要分为以下6类:(1)熔体(M类)包裹体;(2)熔流包裹体;(3)富CO_2包裹体(WC类);(4)含子矿物富CO_2包裹体(SC类);(5)含子矿物水溶液三相包裹体(S类);(6)气液两相包裹体(W类)。热液早阶段为岩浆-热液过渡阶段,以粗粒萤石和重晶石为特征,发育熔融和熔流包裹体,指示成矿流体来自岩浆出溶。WC、SC和S类包裹体主要在热液中阶段石英和萤石中而W类包裹体大部分存在于热液晚阶段氟碳铈矿中。WC类包裹体具有不同的CO_2充填度,表明热液中阶段成矿流体发生不混溶作用。结合WC类包裹体端元组成的显微测温结果和等容线法,模拟计算出不混溶作用发生的温度为280~320℃之间,压力为120~180MPa,盐度范围较大,为2. 4%~42. 4%Na Cleqv。热液成矿期晚阶段氟碳铈矿中的W类包裹体具有稳定的气液比,说明成矿环境较均匀,其测温结果显示大规模稀土矿化主要发生在200~260℃之间,压力<200bars,盐度为6. 5%~11. 2%Na Cleqv。激光拉曼结果显示SC和S类包裹体中的子晶主要为重晶石、天青石和无水芒硝等硫酸盐,指示成矿流体富集Na~+、Ca~(2+)、K~+、Sr~(2+)、Ba~(2+)、SO_4~(2-)、F~-和Cl~-离子。成矿流体δD和δ~(18)O同位素组成分别为-96. 5‰~-50. 1‰和0. 9‰~6. 4‰,与区域上其他碳酸岩型稀土矿流体同位素组成相似,指示流成矿流体出溶过程中经历自岩浆脱气做作用,且晚阶段有大气降水加入。热液成矿期中阶段硫化物和硫酸盐的δ34SV-CDT分别为集中在-6. 10‰~-4. 77‰和4. 33‰~4. 90‰,与区域其他稀土矿床硫同位素值吻合,反应幔源岩浆硫特征。硫酸盐和硫化物的硫平衡分馏计算结果为16. 7‰~25. 1‰,远大于二者差值(9. 1‰~11. 0‰),显示成矿晚阶段为开放系统。以上研究结果和实验岩石学共同指示木落寨矿床稀土元素在热液中主要以[REE(SO4)2]-和[REECl]2+形式迁移,不混溶作用是流体演化的重要过程,提供成矿所需CO_2,而成矿流体冷却和大气降水混入致使络合物分解被认为是热液晚阶段稀土矿物大规模沉淀的主要机制。
        The Muluozhai rare earth element( REE) deposit located in eastern Tibetan Plateau and southwestern Yangtze,is the typical carbonatite-related REE deposit. Compared with other carbonatite-related REE deposits with complicated mineralization processes,the Muluozhai REE deposit has a completed and continuous fluid evolution process and is almost unaffected by hydrothermal alteration and late tectono-magmatic events. Therefore,it is an ideal target for understanding the mineralization process of REE deposits. Based on the detail geological investigation of the 1∶5000 petrology-structure-alteration-mineralization mapping and the study of fluid inclusions,three periods are recognized,namely:( 1) magmatic period;( 2) hydrothermal period and( 3) supergene period.The hydrothermal period is the main mineralization period with divided into early,middle and late stages. The results of study on fluid inclusions in fluorite,quartz and bastnsite from different hydrothermal stages show that six types are recognized,as followed:( 1)melt inclusion( M type);( 2) melt-fluid inclusion( ML type);( 3) CO_2-rich aqueous fluid inclusion( WC type);( 4) solid-bearing CO_2-rich fluid inclusion( SC type);( 5) solid-bearing aqueous fluid inclusion( S type); and( 6) aqueous-rich fluid inclusion( W type). The early hydrothermal stage is transition from magmatic to hydrothermal process. This stage is characterized by coarse-grained fluorite and barite and host M and ML types inclusions,implying that the ore-forming fluid exsolved from magma. WC,SC and S types inclusions are dominant in the fluorite and quartz from the middle hydrothermal stage whereas the W type inclusions are abundant in bastnsite from the late hydrothermal stage. Generally,the WC type inclusions with various carbonic filling degrees are interpreted as the immiscibility took place in the middle hydrothermal stage. Based on the microthermometric and isochoric results of end members of WC type inclusions,immiscibility is constrained at the temperature of 280 ~ 320℃,pressure of 120 ~ 180 MPa and salinities range from2. 4% to 42. 4% Na Cleqv. In the late hydrothermal stage,the W type inclusions in bastnsite have the constant vapor/liquid ratios,indicating that mineralization occurs in the relatively homogeneous environment. Meanwhile,the microthermometric results of W type inclusions show the mineralization occurred at the temperature of 200 ~ 260℃,pressure less than 200 bars and salinities ranges from6. 5% to 11. 2% Na Cleqv. The results of laser Raman spectrum show the solids in SC and S types inclusions are consist of barite,celestine,mirabilite and glaserite,demonstrating that the ore-forming fluid is rich in Na~+,Ca~(2+),K~+,Sr~(2+),Ba~(2+),SO_4~(2-),F~- as well as Cl~-. In addition,the δD and δ~(18) O values of ore-forming fluid range of-96. 5‰ ~-50. 1‰ and 0. 9% ~ 6. 4‰,respectively,corresponding to those in other REE deposits from the same belt. This implies the ore-forming fluid might initially derived from the degasification of magma and mixed with meteoric water in the late. The δ34 SV-CDTvalues between sulfide and sulphate in the Muluozhai deposit are concentrated in-6. 10‰ ~-4. 77‰ and 4. 33‰ ~ 4. 90‰,respectively,which are similar with those in the other REE deposits from the same region and show the characteristics of mantle. The calculation of sulfur equilibrium fractionation between sulphate and sulfide varies from 16. 7‰ to 25. 1‰,which are more than the differential values( 9. 1‰ ~ 11. 0‰) between them,showing mineralization belongs to an open system. Based on the above results and experimental petrology,REEs migrate as [REE( SO_4)_2]~- and [REECl]~(2+) complexes in the hydrothermal fluid. Immiscibility is an important process to support CO_2 for mineralization.But fluid cooling and mixing with meteoric water are regarded as the main mechanism of mineralization by decomposition of complexes.
引文
Angus S,Armstrong B and DE Reuck KM.1980.International thermodynamic tables of the fluid state.Carbon Dioxide.New York:Pergamon Press,1-385
    Castor SB.2008.The Mountain Pass rare-earth carbonatite and associated ultrapotassic rocks,California.The Canadian Mineralogist,46(4):779-806
    Clayton RN,O’Neil JR and Mayeda TK.1972.Oxygen isotope exchange between quartz and water.Journal of Geophysical Research,77(17):3057-3067
    Deng J,Yang LQ,Ge LS,Yuan SS,Wang QF,Zhang J,Gong QJ and Wang CM.2010.Character and post-ore changes,modifications and preservation of Cenozoic alkali-rich porphyry gold metallogenic system in western Yunnan,China.Acta Petrologica Sinica,26(6):1633-1645(in Chinese with English abstract)
    Deng J,Wang CM and Li GJ.2012.Style and process of the superimposed mineralization in the Sanjiang Tethys.Acta Petrologica Sinica,28(5):1349-1361(in Chinese with English abstract)
    Deng J,Wang QF,Li GJ and Santosh M.2014.Cenozoic tectonomagmatic and metallogenic processes in the Sanjiang region,southwestern China.Earth-Science Reviews,138:268-299
    Deng J,Wang QF,Li GJ,Hou ZQ,Jiang CZ and Danyushevsky L.2015.Geology and genesis of the giant Beiya porphyry-skarn gold deposit,northwestern Yangtze Block,China.Ore Geology Reviews,70:457-485
    Deng J and Wang QF.2016.Gold mineralization in China:Metallogenic provinces,deposit types and tectonic framework.Gondwana Research,36:219-274
    Diamond LW.1992.Stability of CO2clathrate hydrate+CO2liquid+CO2vapour+aqueous KCl-NaCl solutions:Experimental determination and application to salinity estimates of fluid inclusions.Geochimica et Cosmochimica Acta,56(1):273-280
    Fan HR,Xie YH,Wang KY,Tao KJ and Wilde SA.2004a.REEdaughter minerals trapped in fluid inclusions in the giant Bayan Obo REE-Nb-Fe deposit,Inner Mongolia,China.International Geology Review,46(7):638-645
    Fan HR,Xie YH,Wang KY and Wilde SA.2004b.Methane-rich fluid inclusions in skarn near the giant REE-Nb-Fe deposit at Bayan Obo,northern China.Ore Geology Reviews,25(3-4):301-309
    Goodenough KM,Schilling J,Jonsson E,Kalvig P,Charles N,Tuduri J,Deady EA,Sadeghi M,Schiellerup H,Müller A,Bertrand G,Arvanitidis N,Eliopoulos DG,Shaw RA,Thrane K and Keulen N.2016.Europe’s rare earth element resource potential:An overview of REE metallogenetic provinces and their geodynamic setting.Ore Geology Reviews,72:838-856
    Groves DI,Golding SD,Rock NMS,Barley ME and Mcnaughton NJ.1988.Archaean carbon reservoirs and their relevance to the fluids source for gold deposits.Nature,331(6153):254-257
    Gültekin AH,rgün Y and Suner F.2003.Geology,mineralogy and fluid inclusion data of the Kizilca9ren fluorite-barite-REE deposit,Eskisehir,Turkey.Journal of Asian Earth Sciences,21(4):365-376
    Guo DX and Liu Y.2019.Occurrence and geochemistry of bastnsite in carbonatite-related REE deposits,Mianning-Dechang REE belt,Sichuan Province,SW China.Ore Geology Reviews,107:266-282
    Guo ZF,Hertogen J,Liu JQ,Pasteels P,Boven A,Punzalan L,He HY,Luo XJ and Zhang WH.2005.Potassic magmatism in western Sichuan and Yunnan provinces,SE Tibet,China:Petrological and geochemical constraints on petrogenesis.Journal of Petrology,46(1):33-78
    Haas JR,Shock EL and Sassani DC.1995.Rare earth elements in hydrothermal systems:Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures.Geochimica et Cosmochimica Acta,59(21):4329-4350
    Hoefs J.2009.Stable Isotope Geochemistry.6thEdition.Berlin,Heidelberg:Springer,1-285
    Hou ZQ,Ma HW,Zaw K,Zhang YQ,Wang MJ,Wang Z,Pan GT and Tang RL.2003.The Himalayan Yulong porphyry copper belt:Product of large-scale strike-slip faulting in eastern Tibet.Economic Geology,98(1):125-145
    Hou ZQ,Tian SH,Yuan ZX,Xie YL,Yin SP,Yi LS,Fei HC and Yang ZM.2006.The Himalayan collision zone carbonatites in western Sichuan,SW China:Petrogenesis,mantle source and tectonic implication.Earth and Planetary Science Letters,244(1-2):234-250
    Hou ZQ,Tian SH,Xie YL,Yuan ZX,Yang ZS,Yin SP,Fei HC,Zou TR,Li XY and Yang ZM.2008.Mianning-Dechang Himalayan REE belt associated with carbonatite-alkalic complex in eastern IndoAsian collision zone,Southwest China:Geological characteristics of REE deposits and a possible metallogenic model.Mineral Deposits,27(2):145-176(in Chinese with English Abstract)
    Hou ZQ and Cook NJ.2009.Metallogenesis of the Tibetan collisional orogen:A review and introduction to the special issue.Ore Geology Reviews,36(1-3):2-24
    Hou ZQ,Tian SH,Xie YL,Yang ZS,Yuan ZX,Yin SP,Yi LS,Fei HC,Zou TR,Bai G and Li XY.2009.The Himalayan MianningDechang REE belt associated with carbonatite-alkaline complexes,eastern Indo-Asian collision zone,SW China.Ore Geology Reviews,36(1-3):65-89
    Hou ZQ,Liu Y,Tian SH,Yang ZM and Xie YL.2015.Formation of carbonatite-related giant rare-earth-element deposits by the recyclingof marine sediments.Scientific Reports,5:10231
    Lan TG,Fan HR,Hu FF,Yang KF and Wang Y.2011.Genesis of the Weishan REE deposit,Shandong Province:Evidences from Rb-Sr isochron age,LA-MC-ICPMS Nd isotopic compositions and fluid inclusions.Geochimica,40(5):428-442(in Chinese with English Abastract)
    Li JK,Yuan ZX,Bai G,Chen YC,Wang DH,Ying LJ and Zhang J.2009.Ore-forming fluid evolvement and its controlling to REE(Ag)mineralizing in the Weishan deposit,Shandong.Journal of Mineralogy and Petrology,29(3):60-68(in Chinese with English abstract)
    Li WS,Ni P,Pan JY,Wang GG,Chen LL,Yang YL and Ding JY.2018.Fluid inclusion characteristics as an indicator for tungsten mineralization in the Mesozoic Yaogangxian tungsten deposit,central Nanling district,South China.Journal of Geochemical Exploration,192:1-17
    Ling XX,Li QL,Liu Y,Yang YH,Liu Y,Tang GQ and Li XH.2016.In situ SIMS Th-Pb dating of bastnaesite:Constraint on the mineralization time of the Himalayan Mianning-Dechang rare earth element deposits.Journal of Analytical Atomic Spectrometry,31(8):1680-1687
    Liu Y,Chen ZY,Yang ZS,Sun X,Zhu ZM and Zhang QC.2015a.Mineralogical and geochemical studies of brecciated ores in the Dalucao REE deposit,Sichuan Province,southwestern China.Ore Geology Reviews,70:613-636
    Liu Y,Zhu ZM,Chen C,Zhang SP,Sun X,Yang ZS and Liang W.2015b.Geochemical and mineralogical characteristics of weathered ore in the Dalucao REE deposit,Mianning-Dechang REE Belt,western Sichuan Province,southwestern China.Ore Geology Reviews,71:437-456
    Liu Y,Hou ZQ,Tian SH,Zhang QC,Zhu ZM and Liu JH.2015c.Zircon U-Pb ages of the Mianning-Dechang syenites,Sichuan Province,southwestern China:Constraints on the giant REEmineralization belt and its regional geological setting.Ore Geology Reviews,64:554-568
    Liu Y and Hou ZQ.2017.A synthesis of mineralization styles with an integrated genetic model of carbonatite-syenite-hosted REE deposits in the Cenozoic Mianning-Dechang REE metallogenic belt,the eastern Tibetan Plateau,southwestern China.Journal of Asian Earth Sciences,137:35-79
    Liu Y,Chakhmouradian AR,Hou ZQ,Song WL and Kynicky J.2019.Development of REE mineralization in the giant Maoniuping deposit(Sichuan,China):Insights from mineralogy,fluid inclusions,and trace-element geochemistry.Mineralium Deposita,54:701-718
    Lu HZ,Fan HR,Ni P,Ou GX,Shen K and Zhang WH.2004.Fluid Inclusion.Beijing:Science Press,1-487(in Chinese)
    Luo YN,Yu RL,Hou LW,Lai SM,Fu DM,Chen MX,Fu XF,Rao RB and Zhou SS.1998.Longmenshan-Jinpingshan Intracontinental Orogenic Belt.Chengdu:Sichuan Science and Technology Press,171(in Chinese)
    Mao SD,Hu JW,Zhang YS and LüMX.2015.A predictive model for the PVTX,properties of CO2-H2O-NaCl fluid mixture up to high temperature and high pressure.Applied Geochemistry,54:54-64
    Migdisov AA and Williams-Jones AE.2014.Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids.Mineralium Deposita,49(8):987-997
    Mitchell AHG and Garson MS.1981.Mineral Deposits and Global Tectonic Settings.London,New York:Academic Press,1-405
    Niu HC,Shan Q and Lin MQ.1996.A study on inclusions in minerals from Mianning REE deposit in Sichuan Province.Geochimica,25(6):559-567(in Chinese with English abstract)
    Ohmoto H.1972.Systematics of sulfur and carbon isotopes in hydrothermal ore deposits.Economic Geology,67(5):551-578
    Ohmoto H and Lasaga AC.1982.Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems.Geochimica et Cosmochimica Acta,46(10):1727-1745
    Ouyang H and Liu Y.2018.REE mineralization and characteristics of wall rocks in the Muluozhai REE deposit,Mianning County,Sichuan Province.Acta Geoscientia Sinica,39(3):329-341(in Chinese with English abstract)
    Ramboz C,Pichavant M and Weisbrod A.1982.Fluid immiscibility in natural processes:Use and misuse of fluid inclusion data:Ⅱ.Interpretation of fluid inclusion data in terms of immiscibility.Chemical Geology,37(1-2):29-48
    Rankin AH.2003.Carbonatite-associated rare metal deposits:Composition and evolution of ore-forming fluids-the fluid inclusion evidence.In:Linnen RL and Samson IM(eds.).Rare-Earth Geochemistry and Mineral Deposits.Canada:Geological Association of Canada,17:299-314
    Roedder E.1984.Fluid inclusions.In:Ribbe HP(ed.).Reviews in Mineralogy.Washington DC:Mineralogical Society of America,12:644
    Samson IM,Liu WN and Williams-Jones AE.1995.The nature of orthomagmatic hydrothermal fluids in the Oka carbonatite,Quebec,Canada:Evidence from fluid inclusions.Geochimica et Cosmochimica Acta,59(10):1963-1977
    Shmulovich KI,Landwehr D,Simon K and Heinrich W.1999.Stable isotope fractionation between liquid and vapour in water-salt systems up to 600℃.Chemical Geology,157(3-4):343-354
    Shu QH,Lai Y,Sun Y,Wang C and Meng S.2013.Ore genesis and hydrothermal evolution of the Baiyinnuo’er zinc-lead skarn deposit,Northeast China:Evidence from Isotopes(S,Pb)and fluid inclusions.Economic Geology,108(4):835-860
    Shu QH,Chang ZS,Hammerli J,Lai Y and Huizenga JM.2017.Composition and evolution of fluids forming the Baiyinnuo’er Zn-Pb skarn deposit,northeastern China:Insights from Laser Ablation ICP-MS study of fluid inclusions.Economic Geology,112(6):1441-1460
    Shu XC and Liu Y.2019.Fluid inclusion constraints on the hydrothermal evolution of the Dalucao carbonatite-related REE deposit,Sichuan Province,China.Ore Geology Reviews,107:41-57
    Smith MP and Henderson P.2000.Preliminary fluid inclusion constraints on fluid evolution in the Bayan Obo Fe-REE-Nb deposit,Inner Mongolia,China.Economic Geology,95(7):1371-1388
    Tian SH,Ding TP and Mao JW.2003.Mantle fluids involved in the oreforming process of the Maoniuping REE deposit,Sichuan:Evidence of C,H,O and S isotopes.Acta Geoscientica Sinica,24(6):543-547(in Chinese with English abstract)
    Tian SH,Zhang GL,Hou ZQ,Ding TP,Xie YL,Yuan ZX,Bai G and Zou TR.2005.Stable isotope data from Muluozhai REE deposit in Mianning County,Sichuan Province,and their geological implications.Mineral Deposits,24(6):647-655(in Chinese with English abstract)
    Tian SH,Yuan ZX,Zhang GL,Hou ZQ,Ding TP,Bai G,Zou TR and Xie YL.2006a.A discussion on the mineralization-related granite in the Muluozhai REE ore deposit,Sichuan Province and its significance.Acta Petrologica et Mineralogica,25(2):110-118(in Chinese with English abstract)
    Tian SH,Hou ZQ,Yuan ZX,Chen W,Xie YL,Fei HC,Yin SP,Yi LSand Zhou S.2006b.40Ar/39Ar geochronology of rocks and ores from the Muluozhai REE deposit in Mianning County,Sichuan Province.Acta Petrologica Sinica,22(10):2431-2436(in Chinese with English abstract)
    Ting WP,Burke EAJ,Rankin AH and Woolley AR.1994.Characterization and petrogenetic significance of CO2,H2O and CH4fluid inclusions in apatite from the Sukulu carbonatite,Uganda.European Journal of Mineralogy,6(6):787-804
    United States Geological Survey.2016.Mineral Commodity Summaries2016.Reston,VA:United States Geological Survey,1-202
    Wang CM,Deng J,Carranza EJM and Santosh M.2014.Tin metallogenesis associated with granitoids in the southwestern Sanjiang Tethyan Domain:Nature,deposit types,and tectonic setting.Gondwana Research,26(2):576-593
    Wang CM,Deng J,Santosh M,Lu YJ,McC uaig TC,Carranza EJM and Wang QF.2015a.Age and origin of the Bulangshan and Mengsong granitoids and their significance for post-collisional tectonics in the Changning-Menglian Paleo-Tethys Orogen.Journal of Asian Earth Sciences,113:656-676
    Wang CM,Deng J,Lu YJ,Bagas L,Kemp AIS and McC uaig TC.2015b.Age,nature and origin of Ordovician Zhibenshan granite from the Baoshan terrane in the Sanjiang region and its significance for understanding Proto-Tethys evolution.International Geology Review,57(15):1922-1939
    Wang CM,Bagas L,Lu YJ,Santosh M,Du B and McC uaig TC.2016.Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen:Insights from zircon Hf-isotopic mapping.Earth-Science Reviews,156:39-65
    Wang CM,Bagas L,Chen JY,Yang LF,Zhang D,Du B and Shi KX.2018.The genesis of the Liancheng Cu-Mo deposit in the Lanping Basin of SW China:Constraints from geology,fluid inclusions,and Cu-S-H-O isotopes.Ore Geology Reviews,92:113-128
    Wang J,Li SQ,Wang BL and Li JJ.1992.The Langshan-Baiyunebo Rift System.Beijing:Peking University press,1-20(in Chinese)
    Wang JH,Yin A,Harrison TM,Grove M,Zhang YQ and Xie GH.2001.A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone.Earth and Planetary Science Letters,188(1-2):123-133
    Weng ZH,Jowitt SM,Mudd GM and Haque N.2013.Assessing rare earth element mineral deposit types and links to environmental impacts.Applied Earth Science,122(2):83-96
    Weng ZH,Jowitt SM,Mudd GM and Haque N.2015.A detailed assessment of global rare earth element resources:Opportunities and challenges.Economic Geology,110(8):1925-1952
    Williams-Jones AE,Samson IM and Olivo GR.2000.The genesis of hydrothermal fluorite-REE deposits in the Gallinas Mountains,New Mexico.Economic Geology,95(2):327-341
    Wood SA.1990.The aqueous geochemistry of the rare-earth elements and yttrium:2.Theoretical predictions of speciation in hydrothermal solutions to 350℃at saturation water vapor pressure.Chemical Geology,88(1-2):99-125
    Xie YL,Tian SH,Hou ZQ,Chen W,Yin SP and Gao S.2008.Discussion of migration and precipitation mechanics in muluo REEdeposit Mianning County,West Sichuan Province:Evidence from fluid inclusions in bastnaesite.Acta Petrologica Sinica,24(3):555-561(in Chinese with English abstract)
    Yang L,Wang QF,Liu H,Carranza EJM,Li GJ and Zhou DQ.2017.Identification and mapping of geochemical patterns and their significance for regional metallogeny in the southern Sanjiang,China.Ore Geology Reviews,90:1042-1053
    Yang L,Wang QF,Wang YN and Li GJ.2018.Proto-to Paleo-Tethyan evolution of the eastern margin of Simao block.Gondwana Research,62:61-74
    Yang LQ,Deng J,Zhao K and Liu JT.2011.Tectono-thermochronology and gold mineralization events of orogenic gold deposits in Ailaoshan orogenic belt,Southwest China:Geochronological constraints.Acta Petrologica Sinica,27(9):2519-2532(in Chinese with English abstract)
    Yang YH,Wu FY,Li Y,Yang JH,Xie LW,Liu Y,Zhang YB and Huang C.2014.In situ U-Pb dating of bastnaesite by LA-ICP-MS.Journal of Analytical Atomic Spectrometry,29(6):1017-1023
    Yin A and Harrison TM.2000.Geologic evolution of the HimalayanTibetan orogen.Annual Review of Earth and Planetary Sciences 28:211-280
    Yuan ZX,Shi ZM,Bai G,Wu CY,Chi RA and Li XY.1995.The Maoniuping Rare Earth Ore Deposit,Mianning County,Sichuan Province.Beijing:Seismological Press,1-150(in Chinese)
    Zhang YX,Luo YN and Yang CX.1988.The Panxi Rift.Beijing:Geological Publishing House,224-270(in Chinese)
    Zheng X and Liu Y.2019.Mechanisms of element precipitation in carbonatite-related rare-earth element deposits:Evidence from fluid inclusions in the Maoniuping deposit,Sichuan Province,southwestern China.Ore Geology Reviews,107:218-238
    Zheng YF.1990.Sulfur isotope fractionation in magmatic systems:Models of Rayleigh distillation and selective flux.Chinese Journal of Geochemistry,9(1):27-45
    Zheng YF,Fu B and Zhang XH.1996.Effects of magma degassing on the carbon and sulfur isotope compositions of igneous rocks.Scientia Geologica Sinica,31(1):43-53(in Chinese with English abstract)
    Zhou JY,Shen B,Zhu ZM and Liu FY.2006.Geological features of Muluo REE deposit in Mianning,Sichuan Province.Chinese Journal of Rare Metals,30(4):494-499(in Chinese with English abstract)
    从柏林.1988.攀西古裂谷的形成与演化.北京:科学出版社,8-41
    邓军,杨立强,葛良胜,袁士松,王庆飞,张静,龚庆杰,王长明.2010.滇西富碱斑岩型金成矿系统特征与变化保存.岩石学报,26(6):1633-1645
    邓军,王长明,李龚健.2012.三江特提斯叠加成矿作用样式及过程.岩石学报,28(5):1349-1361
    侯增谦,田世洪,谢玉玲,袁忠信,杨竹森,尹淑苹,费红彩,邹天人,李小渝,杨志明.2008.川西冕宁-德昌喜马拉雅期稀土元素成矿带:矿床地质特征与区域成矿模型.矿床地质,27(2):145-176
    蓝廷广,范宏瑞,胡芳芳,杨奎锋,王永.2011.山东微山稀土矿矿床成因:来自云母Rb-Sr年龄、激光Nd同位素及流体包裹体的证据.地球化学,40(5):428-442
    李建康,袁忠信,白鸽,陈毓川,王登红,应立娟,张建.2009.山东微山稀土矿床成矿流体的演化及对成矿的制约.矿物岩石,29(3):60-68
    卢焕章,范宏瑞,倪培,欧光习,沈昆,张文淮.2004.流体包裹体.北京:科学出版社,1-487
    骆耀南,俞如龙,侯立玮,赖绍民,付德明,陈茂勋,付小方,饶荣标,周世枢.1998.龙门山-锦屏山陆内造山带.成都:四川科学技术出版社,1-171
    牛贺才,单强,林茂青.1996.四川冕宁稀土矿床包裹体研究.地球化学,25(6):559-567
    欧阳怀,刘琰.2018.四川冕宁木落寨稀土矿稀土矿化与围岩特征.地球学报,39(3):329-341
    田世洪,丁悌平,毛景文.2003.四川牦牛坪稀土矿床地幔流体成矿的碳、氢、氧、硫同位素证据.地球学报,24(6):543-547
    田世洪,张桂兰,侯增谦,丁悌平,谢玉玲,袁忠信,白鸽,邹天人.2005.四川冕宁木落寨稀土矿床稳定同位素研究及其意义.矿床地质,24(6):647-655
    田世洪,袁忠信,张桂兰,侯增谦,丁悌平,白鸽,邹天人,谢玉玲.2006a.四川木落寨稀土矿床与成矿有关的花岗岩问题及其意义.岩石矿物学杂志,25(2):110-118
    田世洪,侯增谦,袁忠信,陈文,谢玉玲,费红彩,尹淑苹,衣龙升,周肃.2006b.四川冕宁木落寨稀土矿床成岩成矿的40Ar/39Ar年代学研究.岩石学报,22(10):2431-2436
    王楫,李双庆,王保良,李家驹.1992.狼山-白云鄂博裂谷系.北京:北京大学出版社,1-20
    谢玉玲,田世洪,侯增谦,陈伟,尹淑苹,高升.2008.四川冕宁木落稀土矿床稀土元素迁移与沉淀机制:来自稀土矿物中流体包裹体的证据.岩石学报,24(3):555-561
    杨立强,邓军,赵凯,刘江涛.2011.哀牢山造山带金矿成矿时序及其动力学背景探讨.岩石学报,27(9):2519-2532
    袁忠信,施泽民,白鸽,吴澄宇,池汝安,李小渝.1995.四川冕宁牦牛坪稀土矿床.北京:地震出版社,1-150
    张云湘,骆耀南,杨崇喜.1988.攀西裂谷.北京:地质出版社,224-270
    郑永飞,傅斌,张学华.1996.岩浆去气作用碳硫同位素效应.地质科学,31(1):43-53
    周家云,沈冰,朱志敏,刘飞燕.2006.四川冕宁木洛稀土矿床地质特征.稀有金属,30(4):494-499
    (1)中国地质科学院矿产综合利用研究所. 2008.四川省冕宁县南河乡阴山村方家堡稀土矿区普查报告
    (1)109地质队. 1997.四川省德昌县大陆槽稀土矿床稀土元素的赋存状态及综合利用研究报告

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700