用户名: 密码: 验证码:
拟南芥及其近缘种的适应性进化研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Adaptive evolution of Arabidopsis and its relatives
  • 作者:郭亚龙
  • 英文作者:GUO Ya-Long;State Key Laboratory of Systematic and Evolutionary Botany,Institute of Botany,Chinese Academy of Sciences;
  • 关键词:适应性进化 ; 基因组 ; 拟南芥 ; 近缘种 ; 十字花科
  • 英文关键词:adaptive evolution;;genome;;Arabidopsis thaliana;;relatives;;Brassicaceae
  • 中文刊名:中国科学:生命科学
  • 英文刊名:Scientia Sinica(Vitae)
  • 机构:中国科学院植物研究所,系统与进化植物学国家重点实验室;
  • 出版日期:2019-04-10 15:41
  • 出版单位:中国科学:生命科学
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金(批准号:31222006,91731306,31470331);; 中国科学院“百人计划”资助
  • 语种:中文;
  • 页:34-40
  • 页数:7
  • CN:11-5840/Q
  • ISSN:1674-7232
  • 分类号:Q941.2
摘要
植物如何适应环境变化从而生存繁衍,即适应性进化,是一个自达尔文时代起就备受关注的生物学核心科学问题.随着测序技术的快速发展,植物中各个主要类群均有物种完成了全基因组测序,并且每个物种里有许多样品完成了重测序.除了基因组外,不同维度的组学数据也得到解析,如转录组、甲基化组、小RNA组及蛋白质组等.海量的多维组学数据极大地促进了适应性进化的研究,基于多维组学数据来研究植物适应性进化的过程及机制已成为植物学研究的一个重要领域.十字花科的拟南芥是植物遗传学及分子生物学研究的模式物种,所有的研究结果及各种资源和数据使拟南芥及其近缘种也成为研究进化生物学问题的模式体系.因此,本文综述了围绕拟南芥及其近缘种近年来在植物适应性进化方面取得的重要进展,并在此基础上探讨该领域仍亟待解决的核心科学问题及未来的研究方向.
        Adaptive evolution,that is,how organisms adapt to diverse habitats and reproduce efficiently,is a fundamental biological question since Darwin.With the development of genome sequencing technique,many species of diverse lineages as well as many accessions within each species have been sequenced.Besides genome sequence,more omics data sets are available now,such as transcriptome,methylome,si RNA,and proteome.High throughput genome sequencing speeds up the studies of plant adaptive evolution.Arabidopsis thaliana,the model plant from the family Brassicaceae,has many available resources or data sets,which makes A.thaliana and its closely related species become a model system to study plant adaptive evolution.Therefore,this review focuses on Arabidopsis and its relatives,to summarize the progress of plant adaptive evolution,and at the same time,to highlight the challenges to understand the mysteries of adaptive evolution.
引文
1 Carroll S P,J?rgensen P S,Kinnison M T,et al.Applying evolutionary biology to address global challenges.Science,2014,346:1245993
    2 Scheffers B R,De Meester L,Bridge T C L,et al.The broad footprint of climate change from genes to biomes to people.Science,2016,354:671-719
    3 Vitti J J,Grossman S R,Sabeti P C.Detecting natural selection in genomic data.Annu Rev Genet,2013,47:97-120
    4 Nielsen R.Molecular signatures of natural selection.Annu Rev Genet,2005,39:197-218
    5 Wright S I,Gaut B S.Molecular population genetics and the search for adaptive evolution in plants.Mol Biol Evol,2005,22:506-519
    6 Huang C H,Sun R,Hu Y,et al.Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution.Mol Biol Evol,2016,33:394-412
    7 Hohmann N,Wolf E M,Lysak M A,et al.A time-calibrated road map of Brassicaceae species radiation and evolutionary history.Plant Cell,2015,27:2770-2784
    8 Novikova P Y,Hohmann N,Nizhynska V,et al.Sequencing of the genus Arabidopsis identifies a complex history of nonbifurcating speciation and abundant trans-specific polymorphism.Nat Genet,2016,48:1077
    9 Han T S,Wu Q,Hou X H,et al.Frequent introgressions from diploid species contribute to the adaptation of the tetraploid shepherd’s purse(Capsella bursa-pastoris).Mol Plant,2015,8:427-438
    10 Yant L,Bomblies K.Genomic studies of adaptive evolution in outcrossing Arabidopsis species.Curr Opin Plant Biol,2017,36:9-14
    11 Knight C A,Molinari N A,Petrov D A.The large genome constraint hypothesis:evolution,ecology and phenotype.Ann Bot,2005,95:177-190
    12 Gaut B S,Ross-Ibarra J.Selection on major components of angiosperm genomes.Science,2008,320:484-486
    13 Ai B,Wang Z S,Ge S.Genome size is not correlated with effective population size in the Oryza species.Evolution,2012,66:3302-3310
    14 Petrov D A,Sangster T A,Johnston J S,et al.Evidence for DNA loss as a determinant of genome size.Science,2000,287:1060-1062
    15 Hu T T,Pattyn P,Bakker E G,et al.The Arabidopsis lyrata genome sequence and the basis of rapid genome size change.Nat Genet,2011,43:476-481
    16 Guo Y L.Gene family evolution in green plants with emphasis on the origination and evolution of Arabidopsis thaliana genes.Plant J,2013,73:941-951
    17 Li Z W,Chen X,Wu Q,et al.On the origin of de novo genes in Arabidopsis thaliana populations.Genome Biol Evol,2016,8:2190-2202
    18 Wei L,Cao X.The effect of transposable elements on phenotypic variation:insights from plants to humans.Sci China Life Sci,2016,59:24-37
    19 Chuong E B,Elde N C,Feschotte C.Regulatory activities of transposable elements:from conflicts to benefits.Nat Rev Genet,2017,18:71-86
    20 Song X,Cao X.Transposon-mediated epigenetic regulation contributes to phenotypic diversity and environmental adaptation in rice.Curr Opin Plant Biol,2017,36:111-118
    21 Eimer H,Sureshkumar S,Singh Yadav A,et al.RNA-dependent epigenetic silencing directs transcriptional downregulation caused by intronic repeat expansions.Cell,2018,174:1095-1105.e11
    22 Cheng F,Sun C,Wu J,et al.Epigenetic regulation of subgenome dominance following whole genome triplication in Brassica rapa.New Phytol,2016,211:288-299
    23 Hollister J D,Smith L M,Guo Y L,et al.Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata.Proc Natl Acad Sci USA,2011,108:2322-2327
    24 Rebollo R,Romanish M T,Mager D L.Transposable elements:An abundant and natural source of regulatory sequences for host genes.Annu Rev Genet,2012,46:21-42
    25 González J,Lenkov K,Lipatov M,et al.High rate of recent transposable element-induced adaptation in Drosophila melanogaster.PLo S Biol,2008,6:e251
    26 González J,Karasov T L,Messer P W,et al.Genome-wide patterns of adaptation to temperate environments associated with transposable elements in Drosophila.PLo S Genet,2010,6:e1000905
    27 Li Z W,Hou X H,Chen J F,et al.Transposable elements contribute to the adaptation of Arabidopsis thaliana.Genome Biol Evol,2018,10:2140-2150
    28 Guo Y L,Zhao X,Lanz C,et al.Evolution of the S-locus region in Arabidopsis relatives.Plant Physiol,2011,157:937-946
    29 Chen G,Zhang B,Zhao Z,et al.“A life or death decision”for pollen tubes in S-RNase-based self-incompatibility.J Exp Bot,2010,61:2027-2037
    30 Wu Q,Han T S,Chen X,et al.Long-term balancing selection contributes to adaptation in Arabidopsis and its relatives.Genome Biol,2017,18:217
    31 Cao J,Schneeberger K,Ossowski S,et al.Whole-genome sequencing of multiple Arabidopsis thaliana populations.Nat Genet,2011,43:956-963
    32 Horton M W,Hancock A M,Huang Y S,et al.Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the Reg Map panel.Nat Genet,2012,44:212-216
    33 The 1001 Genomes Consortium.1135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana.Cell,2016,166:481-491
    34 Zou Y P,Hou X H,Wu Q,et al.Adaptation of Arabidopsis thaliana to the Yangtze River basin.Genome Biol,2017,18:239
    35 Long Q,Rabanal F A,Meng D,et al.Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden.Nat Genet,2013,45:884-890
    36 Durvasula A,Fulgione A,Gutaker R M,et al.African genomes illuminate the early history and transition to selfing in Arabidopsis thaliana.Proc Natl Acad Sci USA,2017,114:5213-5218
    37 Zeng L,Gu Z,Xu M,et al.Discovery of a high-altitude ecotype and ancient lineage of Arabidopsis thaliana from Tibet.Sci Bull,2017,62:1628-1630
    38 Becker C,Hagmann J,Müller J,et al.Spontaneous epigenetic variation in the Arabidopsis thaliana methylome.Nature,2011,480:245-249
    39 Gan X,Stegle O,Behr J,et al.Multiple reference genomes and transcriptomes for Arabidopsis thaliana.Nature,2011,477:419-423
    40 Schmitz R J,Schultz M D,Urich M A,et al.Patterns of population epigenomic diversity.Nature,2013,495:193-198
    41 Seymour D K,Koenig D,Hagmann J,et al.Evolution of DNA methylation patterns in the Brassicaceae is driven by differences in genome organization.PLo S Genet,2014,10:e1004785
    42 Kawakatsu T,Huang S S C,Jupe F,et al.Epigenomic diversity in a global collection of Arabidopsis thaliana accessions.Cell,2016,166:492-505
    43 Gaut B.Arabidopsis thaliana as a model for the genetics of local adaptation.Nat Genet,2012,44:115-116
    44 Weigel D,Nordborg M.Population genomics for understanding adaptation in wild plant species.Annu Rev Genet,2015,49:315-338
    45 Clark R M,Schweikert G,Toomajian C,et al.Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana.Science,2007,317:338-342
    46 He F,Kang D,Ren Y,et al.Genetic diversity of the natural populations of Arabidopsis thaliana in China.Heredity,2007,99:423-431
    47 Turner T L,Bourne E C,Von Wettberg E J,et al.Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils.Nat Genet,2010,42:260-263
    48 Arnold B J,Lahner B,Da Costa J M,et al.Borrowed alleles and convergence in serpentine adaptation.Proc Natl Acad Sci USA,2016,113:8320-8325
    49 Hancock A M,Brachi B,Faure N,et al.Adaptation to climate across the Arabidopsis thaliana genome.Science,2011,334:83-86
    50 Fournier-Level A,Korte A,Cooper M D,et al.A map of local adaptation in Arabidopsis thaliana.Science,2011,334:86-89
    51 Shen X,De Jonge J,Forsberg S K G,et al.Natural CMT2 variation is associated with genome-wide methylation changes and temperature seasonality.PLo S Genet,2014,10:e1004842
    52 Stebbins G L Jr.The significance of polyploidy in plant evolution.Am Natist,1940,74:54-66
    53 Arrigo N,Barker M S.Rarely successful polyploids and their legacy in plant genomes.Curr Opin Plant Biol,2012,15:140-146
    54 Weigel D.Natural variation in Arabidopsis:from molecular genetics to ecological genomics.Plant Physiol,2012,158:2-22
    55 Hepworth J,Dean C.Flowering Locus C’s lessons:Conserved chromatin switches underpinning developmental timing and adaptation.Plant Physiol,2015,168:1237-1245
    56 Guo Y L,Todesco M,Hagmann J,et al.Independent FLC mutations as causes of flowering-time variation in Arabidopsis thaliana and Capsella rubella.Genetics,2012,192:729-739
    57 SaloméP A,Bomblies K,Laitinen R A E,et al.Genetic architecture of flowering-time variation in Arabidopsis thaliana.Genetics,2011,188:421-433
    58 Leinonen P H,Remington D L,Lepp?l?J,et al.Genetic basis of local adaptation and flowering time variation in Arabidopsis lyrata.Mol Ecol,2013,22:709-723
    59 Zhou C M,Zhang T Q,Wang X,et al.Molecular basis of age-dependent vernalization in Cardamine flexuosa.Science,2013,340:1097-1100
    60 Lee C R,Wang B,Mojica J P,et al.Young inversion with multiple linked QTLs under selection in a hybrid zone.Nat Ecol Evol,2017,1:119
    61 Xiao D,Zhao J J,Hou X L,et al.The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time,identified through transcriptional co-expression networks.J Exp Bot,2013,64:4503-4516
    62 Bergonzi S,Albani M C,Ver Loren van Themaat E,et al.Mechanisms of age-dependent response to winter temperature in perennial flowering of Arabis alpina.Science,2013,340:1094-1097
    63 Wang R,Farrona S,Vincent C,et al.PEP1 regulates perennial flowering in Arabis alpina.Nature,2009,459:423-427
    64 Castaings L,Bergonzi S,Albani M C,et al.Evolutionary conservation of cold-induced antisense RNAs of FLOWERING LOCUS C in Arabidopsis thaliana perennial relatives.Nat Commun,2014,5:4457
    65 Foxe J P,Slotte T,Stahl E A,et al.Recent speciation associated with the evolution of selfing in Capsella.Proc Natl Acad Sci USA,2009,106:5241-5245
    66 Guo Y L,Bechsgaard J S,Slotte T,et al.Recent speciation of Capsella rubella from Capsella grandiflora,associated with loss of selfincompatibility and an extreme bottleneck.Proc Natl Acad Sci USA,2009,106:5246-5251
    67 Hurka H,Neuffer B.Evolutionary processes in the genus Capsella(Brassicaceae).Pl Syst Evol,1997,206:295-316
    68 Yang L,Wang H N,Hou X H,et al.Parallel evolution of common allelic variants confers flowering diversity in Capsella rubella.Plant Cell,2018,30:1322-1336
    69 Moyers B T.Is genetic evolution predictable?Plant Cell,2018,30:1171-1172
    70 Todesco M,Balasubramanian S,Hu T T,et al.Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana.Nature,2010,465:632-636
    71 Kang J,Zhang H,Sun T,et al.Natural variation of C-repeat-binding factor(CBF s)genes is a major cause of divergence in freezing tolerance among a group of Arabidopsis thaliana populations along the Yangtze River in China.New Phytol,2013,199:1069-1080
    72 Atwell S,Huang Y S,Vilhjálmsson B J,et al.Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines.Nature,2010,465:627-631

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700