用户名: 密码: 验证码:
冈底斯西段鲁尔玛斑岩型铜(金)矿成矿流体性质及演化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Origin and Evolution of Ore-Forming Fluids in Luerma Porphyry Copper (Gold) Deposit from Western Gangdise
  • 作者:刘洪 ; 张林奎 ; 黄瀚霄 ; 李光明 ; 吕梦鸿 ; 闫国强 ; 黄勇 ; 兰双双 ; 解惠
  • 英文作者:Liu Hong;Zhang Linkui;Huang Hanxiao;Li Guangming;Lü Menghong;Yan Guoqiang;Huang Yong;Lan Shuangshuang;Xie Hui;Chengdu Center,China Geological Survey;Sichuan Institute of Metallurgical Geology & Exploration;Tianjin Center,China Geological Survey;
  • 关键词:流体包裹体 ; 斑岩型铜矿 ; 冈底斯成矿带 ; 鲁尔玛 ; H-O同位素 ; 矿床
  • 英文关键词:fluid inclusions;;porphyry copper deposit;;Gangdise polymetallic metallogenic belte;;Luerma copper(gold) deposit;;H-O isotopes;;deposits
  • 中文刊名:地球科学
  • 英文刊名:Earth Science
  • 机构:中国地质调查局成都地质调查中心;四川省冶金地质勘查院;中国地质调查局天津地质调查中心;
  • 出版日期:2018-11-20 13:27
  • 出版单位:地球科学
  • 年:2019
  • 期:06
  • 基金:国家重点研发计划(Nos.SQ2018YFC060162,2016YFC0600308);; 中国地质调查项目(Nos.DD20160015,DD20190542,DD20190147);; 中国科学院战略性先导科技专项(No.XDA20070304);; 西南地质科技创新中心青藏高原国际大学科计划联合资助的成果
  • 语种:中文;
  • 页:169-190
  • 页数:22
  • CN:42-1874/P
  • ISSN:1000-2383
  • 分类号:P618.41;P618.51
摘要
目前冈底斯成矿带报道的斑岩型矿床主要集中在东段,而鲁尔玛斑岩型铜(金)矿为冈底斯成矿带西段新发现的铜矿,具有钾硅酸盐化、绢英岩化、青磐岩等明显的斑岩型矿床蚀变特征.其热液脉体从早到晚化分为:钾硅酸盐化脉(A脉)、石英-金属硫化物脉(B脉)以及石英-绿帘石-碳酸盐化脉(D脉).对各阶段热液脉体的的流体包裹体进行了岩相学、显微测温、显微激光拉曼和H-O-C同位素等分析.发现A脉石英中流体包裹体的形成温度集中在390~460℃,盐度介于4.5%~21.6%NaCleqv和43.6%~59.6%NaCleqv两个区间;B脉石英中流体包裹体的形成温度集中在310~380℃,盐度介于3.6%~19.8%NaCleqv和6.0%~16.0%NaCleqv两个区间;D脉石英和方解石中流体包裹体的形成温度集中在200~320℃,盐度集中在0.4%~14.7%NaCleqv.拉曼分析表明,鲁尔玛铜(金)矿的流体包裹体含CO_2、N_2、CH_4等气体及石盐子晶和多种金属硫化物和金属氧化物子晶.各热液脉体石英中流体包裹体的δDH_2O,V-SMOW值的变化范围为-128‰~-110‰,δ~(18)OH_2O,V-SMOW值的变化范围为-9.09‰~-1.45‰,方解石的δ13CCal,V-PDB值的变化范围为-20.8‰~-19.8‰,δ~(18)OCal,V-SMOW值的变化范围为-5.9‰~-4.9‰,展现出岩浆热液的特征,晚期还有大气降水的加入.研究结果显示,成矿流体属高温、高盐度、含CO_2、N_2、CH_4等气体和Cu、Fe、Mo等金属元素的Ca~+-Na~+-Cl~-H_2O体系流体,具有典型的斑岩型铜矿床成矿流体的特征.成矿流体从深部封闭体系运移到浅部的开放体系,温压环境突变导致金属硫化物沉淀,形成A脉和B脉型矿化.随着成矿物质的大量析出,同时伴随着大气降水等因素的影响,流体温度、盐度迅速降低,产生D脉型矿化.
        The current studies of the deposits in the Gangdese metallogenic belt is predominate in the eastern section, but the new discovered Luerma porphyry copper(gold) Deposit belongs to the western segment of Gangdise polymetallic metallogenic belt.The Luerma copper(gold) deposit developed typical porphyry deposits' hydrothermal alteration zones, which are divided as potassium-silicification zone, sericitization zone, clayization zone, and propylitization-propylitization zone from proximal to distal,respectively. Hornfels and malachite are also generally distributed in the mining area. Moreover, three main types of hydrothermal veins have been identified based on its mineral assemblages, cutting relationship and alteration features, which consist of the potassium-silicification vein(A vein), the medium-term quartz-polymetallic sulfides vein(B vein), and the epidote-carbonatation(D vein), respectively. Petrographic, microthermometric, laser Raman microprobe and H-O-C results of fluid inclusions in different hydrothermal veins. Fluid inclusions of A vein's homogenization temperatures, and salinities vary from 390~460 ℃, 4.5%~21.6% NaCleqv, 43.6%~59.6% NaCleqv, respectively; fluid inclusions of B vein's homogenization temperatures, and salinities, vary from 310~380 ℃, 3.6%~19.8% NaCleqv, 6.0%~16.0% NaCleqv, respectively; fluid inclusions of D vein's homogenization temperatures, and salinities, vary from 200~320 ℃, 0.4%~14.7% NaCleqv, 0.70~1.00 g/cm~3, respectively.And the carbon, hydrogen, oxygen isotope test results reveals that the δDH_2 O, V-SMOWvalues of fluid inclusions in quartz veins range from-128‰ to-100‰, and δ~(18) OH_2 O, V-SMOWvalues of fluid inclusions in quartz veins range from-9.09 ‰ to-1.45‰, theδ13 CCal, V-PDBvalues of calcite veins range from-20.8‰ to-19.9‰, and δ~(18) OCal, V-SMOWvalues of calcite veins range 9.4‰ to10.5‰, indicating a feature of magmatic hydrothermal, but may mixtured geothermal water in late stage. In brief, the ore-forming fluid of the Luerma copper(gold) deposit is a Ca~+-Na~+-Cl~-H_2 O fluid system, with high contents of CO_2, N_2, and CH_4, high homogenization temperature, high salinity and, low-moderate density, rich in metallic elements as Cu, Fe, and Mo et al., which characteristics similar to typical porphyry copper deposits. These studies suggest that, the luerma copper ore ore-forming fluid moved from the deep closed system to the shallow open system and broke through the critical state of decompressing boiling rapidly, which occurred phase separation resulting in the precipitation of metal sulfide, forming A vein and B vein type mineralization. Afterwards, as the heavy precipitation of minerals in ore bearing hydrothermal fluid, and the mixing of atmospheric precipitation, et al., the temperature and salinity of the fluid decreased rapidly, resulting in D vein mineralization.
引文
Bischoff,J.L.,1991.Densities of Liquids and Vapors in Boiling NaCl-H2O Solutions:A P-V-T-x Summary from 300°Cto 500°C.American Journal of Science,291(4):309-338.https://doi.org/10.2475/ajs.291.4.309
    Bodnar,R.J.,1983.A Method of Calculating Fluid Inclusion Volumes Based on Vapor Bubble Diameters and P-V-T-x Properties of Inclusion Fluids.Economic Geology,78(3):535-542.https://doi.org/10.2113/gsecongeo.78.3.535
    Bodnar,R.J.,Burnham,C.W.,Sterner,S.M.,1985.Synthetic Fluid Inclusions in Natural Quartz.III.Determination of Phase Equilibrium Properties in the System H2O-NaCl to 1 000°C and 1 500 bars.Geochimica et Cosmochimica Acta,49(9):1861-1873.https://doi.org/10.1016/0016-7037(85)90081-x
    Chen,Y.J.,Ni,P.,Fan,H.R.,et al.,2007.Diagnostic Fluid Inclusions of Different Types Hydrothermal Gold Deposits.Acta Petrologica Sinica,23(9):2085-2108(in Chinese with English abstract).
    Clayton,R.N.,O'Neil,J.R.,Mayeda,T.K.,1972.Oxygen Isotope Exchange between Quartz and Water.Journal of Geophysical Research,77(17):3057-3067.https://doi.org/10.1029/jb077i017p03057
    Cline,J.S.,Bodnar,R.J.,1991.Can Economic Porphyry Copper Mineralization be Generated by a Typical Calc-Alkaline Melt?Journal of Geophysical Research,96(B5):8113-8126.
    Diamond,L.W.,Marshall,D.D.,Jackman,J.A.,et al.,1990.Elemental Analysis of Individual Fluid Inclusions in Minerals by Secondary Ion Mass Spectrometry(SIMS):Application to Cation Ratios of Fluid Inclusions in an Archaean Mesothermal Gold-Quartz Vein.Geochimica et Cosmochimica Acta,54(3):545-552.https://doi.org/10.1016/0016-7037(90)90351-k
    Gou,Z.B.,Liu,H.,Li,J.,et al.,2018.The Petrogenesis and Tectonic Significance of Early Cretaceous Volcanic Rocks in Nixiong Area from the Central and Northern Lhasa Terrane.Earth Science,43(8):2780-2794(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2018.153
    Groves,D.I.,Goldfarb,R.J.,Gebre-Mariam,M.,et al.,1998.Orogenic Gold Deposits:A Proposed Classification in the Context of Their Crustal Distribution and Relationship to Other Gold Deposit Types.Ore Geology Reviews,13(1-5):7-27.https://doi.org/10.1016/s0169-1368(97)00012-7
    Hall,D.L.,Sterner,S.M.,Bodnar,R.J.,1988.Freezing Point Depression of NaCl-KCl-H2O Solutions.Economic Geology,83(1):197-202.https://doi.org/10.2113/gsecongeo.83.1.197
    Hou,Z.Q.,2010.Metallogenesis of Continental Collision.Acta Geologica Sinica,84(1):30-58(in Chinese with English abstract).
    Hou,Z.Q.,Yang,Z.M.,Lu,Y.J.,et al.,2015.A Genetic Linkage between Subduction-and Collision-Related Porphyry Cu Deposits in Continental Collision Zones.Geology,43(3):247-250.https://doi.org/10.1130/g36362.1
    Hu,Q.C.,Yan,H.,Wu,C.M.,2014.Constrains of Properties and Evolution Patterns of H2O-Cl-S Fluid on Forming of Porphyry-Epithermal Cu-Au Deposit.Geological Review,60(3):601-610(in Chinese with English abstract).
    Huang,Y.,Li,G.M.,Ding,J.,et al.,2017.Origin of the Newly Discovered Zhunuo Porphyry Cu-Mo-Au Deposit in the Western Part of the Gangdese Porphyry Copper Belt in the Southern Tibetan Plateau,SW China.Acta Geologica Sinica(English Edition),91(1):109-134.https://doi.org/10.1111/1755-6724.13066
    Li,F.Q.,Liu,W.,Zhang,S.Z.,et al.,2012.Chronology and Geochemical Characteristics of Yawa Mafic Complex in the Dajiacuo Area,Southern Gangdese.Acta Geologica Sinica,86(10):1592-1603(in Chinese with English abstract).
    Li,G.M.,Pan,G.T.,Wang,G.M.,et al.,2004.Evaluation and Prospecting Value of Mineral Resources in Gangdise Metallogenic Belt,Tibet,China.Journal of Chengdu University of Technology(Science&Technology Edition),31(1):22-27(in Chinese with English abstract).
    Li,M.,Sun,X.,Zheng,Y.Y.,et al.,2015.Characteristic of Fluid Inclusions of the Zhunuo Porphyry Copper Deposit in the Gangdese Belt,Tibet.Acta Petrologica Sinica,31(5):1335-1347(in Chinese with English abstract).
    Li,Y.X.,Li,G.M.,Xie,Y.L.,et al.,2018.Properties and Evolution Path of Ore-Forming Fluid in Qiagong Polymetallic Deposit of Middle Gangdese in Tibet,China.Earth Science,43(8):2684-2700(in Chinese with English abstract).
    Liu,H.,Li,G.M.,Huang,H.X.,et al.,2018.Petrogenesis of Late Cretaceous Jiangla’angzong I-Type Granite in Central Lhasa Terrane,Tibet,China:Constraints from WholeRock Geochemistry,Zircon U-Pb Geochronology,and SrNd-Pb-Hf Isotopes.Acta Geologica Sinica(English Edition),92(4):1396-1414.https://doi.org/10.1111/1755-6724.13634
    Liu,H.,Lü,X.B.,Liu,G.,et al.,2012.Origin and Evolution of Ore-Forming Fluids in Jincheng Gold Ore Deposit,Luoshan,Henan.Journal of Mineralogy and Petrology,32(3):51-61(in Chinese with English abstract).
    Liu,J.M.,Liu,J.J.,1997.Basin Fluid Genetic Model of Sediment-Hosted Microdisseminated Gold Deposits in the Gold-Triangle Area between Guizhou,Guangxi and Yunnan.Acta Mineralogica Sinica,17(4):448-456(in Chinese with English abstract).
    Loucks,R.R.,Mavrogenes,J.A.,1999.Gold Solubility in Supercritical Hydrothermal Brines Measured in Synthetic Fluid Inclusions.Science,284(5423):2159-2163.https://doi.org/10.1126/science.284.5423.2159
    Lu,H.Z.,Bi,X.W.,Wang,D.,et al.,2016.Ore-Forming Fluids of Porphyry Copper(Molybdenum-Gold)Deposits.Mineral Deposits,35(5):933-952(in Chinese with English abstract).
    Lü,X.B.,Yao,S.Z.,He,M.C.,2001.The Determining of the Salinity of the Ore-Forming Fluid Inclusions Using ML-RM.Earth Science Frontiers,8(4):429-433(in Chinese with English abstract).
    Mo,X.X.,Niu,Y.L.,Dong,G.C.,et al.,2008.Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth:A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet.Chemical Geology,250(1-4):49-67.https://doi.org/10.1016/j.chemgeo.2008.02.003
    Pan,G.T.,Wang,L.Q.,Li,R.S.,et al.,2012.Tectonic Evolution of the Qinghai-Tibet Plateau.Journal of Asian Earth Sciences,53:3-14.https://doi.org/10.1016/j.jseaes.2011.12.018
    Pan,G.T.,Xiao,Q.H.,Lu,S.N.,et al.,2009.Subdivision of Tectonic Units in China.Geology in China,36(1):1-28(in Chinese with English abstract).
    She,H.Q.,Li,J.W.,Feng,C.Y.,et al.,2006.The High-Temperature and Hypersaline Fluid Inclusions and Its Implications to the Metallogenesis in Duobuza Porphyry Copper Deposit,Tibet.Acta Geologica Sinica,80(9):1434-1447(in Chinese with English abstract).
    Song,Y.,Tang,J.X.,Qu,X.M.,et al.,2014.Progress in the Study of Mineralization in the Bangongco-Nujiang Metallogenic Belt and Some New Recognition.Advances in Earth Science,29(7):795-809(in Chinese with English abstract).
    Tafti,R.,Mortensen,J.K.,Lang,J.R.,et al.,2009.Jurassic U-Pb and Re-Os Ages for the Newly Discovered Xietongmen Cu-Au Porphyry District,Tibet,PRC:Implications for Metallogenic Epochs in the Southern Gangdese Belt.Economic Geology,104(1):127.https://doi.org/10.2113/gsecongeo.104.1.127
    Tang,J.X.,Wang,Q.,Yang,H.H.,et al.,2017.Mineralization,Exploration and Resource Potential of PorphyrySkarn-Epithermal Copper Polymetallic Deposits in Tibet.Acta Geoscientica Sinica,38(5):571-613(in Chinese with English abstract).
    Tang,J.X.,Zhang,L.,Li,Z.J.,et al.,2006.Porphyry Copper Deposit Controlled by Structural Nose Trap:Yulong Porphyry Copper Deposit in Eastern Tibet.Mineral Deposits,25(6):652-662(in Chinese with English abstract).
    Taylor,H.P.,1974.The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition.Economic Geology,69(6):843-883.https://doi.org/10.2113/gsecongeo.69.6.843
    Wang,R.,Tafti,R.,Hou,Z.Q.,et al.,2017.Across-Arc Geochemical Variation in the Jurassic Magmatic Zone,Southern Tibet:Implication for Continental Arc-Related Porphyry Cu-Au Mineralization.Chemical Geology,451:116-134.
    Wang,R.,Weinberg,R.F.,Collins,W.J.,et al.,2018.Origin of Postcollisional Magmas and Formation of Porphyry Cu Deposits in Southern Tibet.Earth-Science Reviews,181:122-143.https://doi.org/10.1016/j.earscirev.2018.02.019
    Xu,Z.Q.,Dilek,Y.,Cao,H.,et al.,2015.Paleo-Tethyan Evolution of Tibet as Recorded in the East Cimmerides and West Cathaysides.Journal of Asian Earth Sciences,105:320-337.
    Yang,Z.M.,Hou,Z.Q.,Chang,Z.S.,et al.,2016.Cospatial Eocene and Miocene Granitoids from the Jiru Cu Deposit in Tibet:Petrogenesis and Implications for the Formation of Collisional and Postcollisional Porphyry Cu Systems in Continental Collision Zones.Lithos,245:243-257.https://doi.org/10.1016/j.lithos.2015.04.002
    Yang,Z.M.,Hou,Z.Q.,Li,Z.Q.,et al.,2008.Direct Record of Primary Fluid Exsolved from Magma:Evidence from Unidirectional Solidification Texture(UST)in Quartz Found in Qulong Porphyry Copper Deposit,Tibet.Mineral Deposits,27(2):188-199(in Chinese with English abstract).
    Zheng,S.H.,Zhang,Z.F.,Ni,B.L.,et al.,1982.Hydrogen and Oxygen Isotopic Studies of Thermal Waters in Xizang.Acta Scicentiarum Naturalium Universitatis Pekinesis,18(1):99-106(in Chinese with English abstract).
    Zheng,Y.Y.,Sun,X.,Gao,S.B.,et al.,2015.Metallogenesis and the Minerogenetic Series in the Gangdese Polymetallic Copper Belt.Journal of Asian Earth Sciences,103:23-39.https://doi.org/10.1016/j.jseaes.2014.11.036
    Zhu,D.C.,Pan,G.T.,Chung,S.L.,et al.,2008.SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation,Southern Gangdese,South Tibet.International Geology Review,50(5):442-471.https://doi.org/10.2747/0020-6814.50.5.442
    陈衍景,倪培,范宏瑞,等,2007.不同类型热液金矿系统的流体包裹体特征.岩石学报,23(9):2085-2108.
    苟正彬,刘函,李俊,等,2018.拉萨地块中北部尼雄地区早白垩世火山岩的成因及构造意义.地球科学,43(8):2780-2794.https://doi.org/10.3799/dqkx.2018.153
    侯增谦,2010.大陆碰撞成矿论.地质学报,84(1):30-58.
    胡庆成,闫浩,吴春明,2014.斑岩-浅成低温热液型Cu-Au矿H2O-Cl-S流体性质和演化方式对成矿的制约.地质论评,60(3):601-610.
    李奋其,刘伟,张士贞,等,2012.冈底斯南部打加错地区鸭洼基性杂岩的年代学及地球化学特征.地质学报,86(10):1592-1603.
    李光明,潘桂棠,王高明,等,2004.西藏冈底斯成矿带矿产资源远景评价与展望.成都理工大学学报(自然科学版),31(1):22-27.
    李淼,孙祥,郑有业,等,2015.西藏冈底斯朱诺斑岩型铜矿床流体包裹体特征.岩石学报,31(5):1335-1347.
    李应栩,李光明,谢玉玲,等,2018.西藏冈底斯中段恰功多金属矿床成矿流体性质与演化.地球科学,43(8):2684-2700.https://doi.org/10.3799/dqkx.2018.170
    刘洪,吕新彪,刘阁,等,2012.河南罗山金城金矿成矿流体性质及演化.矿物岩石,32(3):51-61.
    刘建明,刘家军,1997.滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式.矿物学报,17(4):448-456.
    卢焕章,毕献武,王蝶,等,2016.斑岩铜(钼-金)矿床的成矿流体.矿床地质,35(5):933-952.
    吕新彪,姚书振,何谋春.2001.成矿流体包裹体盐度的拉曼光谱测定.地学前缘,8(4):429-433.
    潘桂棠,肖庆辉,陆松年,等,2009.中国大地构造单元划分.中国地质,36(1):1-28.
    佘宏全,李进文,丰成友,等.2006.西藏多不杂斑岩铜矿床高温高盐度流体包裹体及其成因意义.地质学报,80(9):1434-1447,1491.
    宋扬,唐菊兴,曲晓明,等,2014.西藏班公湖-怒江成矿带研究进展及一些新认识.地球科学进展,29(7):795-809.
    唐菊兴,王勤,杨欢欢,等,2017.西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力.地球学报,38(5):571-613.
    唐菊兴,张丽,李志军,等,2006.西藏玉龙铜矿床:鼻状构造圈闭控制的特大型矿床.矿床地质,25(6):652-662.
    杨志明,侯增谦,李振清,等,2008.西藏驱龙斑岩铜钼矿床中UST石英的发现:初始岩浆流体的直接记录.矿床地质,27(2):188-199.
    郑淑蕙,张知非,倪葆龄,等,1982.西藏地热水的氢氧稳定同位素研究.北京大学学报(自然科学版),18(1):99-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700