用户名: 密码: 验证码:
尼日尔阿泽里克铀矿床蚀变及地球化学特征——对成矿物质来源的约束
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Features of alteration and geochemistry of Azelik uranium deposit of Niger:Restraint to source of metallogenetic materials
  • 作者:许强 ; 秦明宽 ; 范洪海 ; 顾大钊 ; 李娟 ; 何中波 ; 刘章月 ; 黄少华
  • 英文作者:XU Qiang;QIN MingKuan;FAN HongHai;GU DaZhao;LI Juan;HE ZhongBo;LIU ZhangYue;HUANG ShaoHua;Beijing Research Institute of Uranium Geology;CNNC Key Laboratory of Uranium Resources Exploration and Evaluation Technology;China National Nuclear Corporation;
  • 关键词:地球化学 ; 砂岩型铀矿 ; 成矿物质来源 ; 方沸石化 ; 火山玻璃脱玻化 ; 尼日尔阿泽里克铀矿床
  • 英文关键词:geochemistry;;sandstone type uranium deposit;;source of metallogenetic material;;analcimization;;devitrification;;Azelik deposit in the Niger
  • 中文刊名:矿床地质
  • 英文刊名:Mineral Deposits
  • 机构:核工业北京地质研究院;中核集团铀资源勘查与评价技术重点实验室;中国核工业集团有限公司;
  • 出版日期:2019-06-15
  • 出版单位:矿床地质
  • 年:2019
  • 期:03
  • 基金:核能开发项目“准噶尔大型叠合盆地地浸砂岩型铀矿预测技术研究”、“非洲中南部古老地块铀矿综合识别评价技术及应用研究”;; 地质调查项目(编号:DD2016013628、DD20190813-7)联合资助
  • 语种:中文;
  • 页:212-229
  • 页数:18
  • CN:11-1965/P
  • ISSN:0258-7106
  • 分类号:P619.14
摘要
为揭示尼日尔阿泽里克铀矿床成矿物质来源,文章研究了其蚀变特征、稀土元素特征、流体包裹体特征、方解石胶结物碳和氧同位素特征、沥青铀矿氧同位素特征等。阿泽里克铀矿床发育灰绿色还原蚀变、方沸石化、酸性火山玻璃脱玻化、碳酸盐化、黄铁矿化、重晶石化等。矿化砂岩稀土元素Eu强正异常。流体包裹体气体成分为H2+N2+CO2组合。方解石胶结物的δ13CV-PDB值为-7.45‰~-6.65‰,δ18OV-SMOW值为-0.74‰~1.26‰。沥青铀矿的δ18OV-SMOW值为-1.30‰~-0.8‰。灰绿色还原蚀变岩石呈灰绿色是因为绿泥石矿物充填粒间孔隙和包裹颗粒表面。矿化砂岩的Eu强正异常揭示有来自深部的强还原性流体参与成矿。H2为强还原物质,来自深部,可为铀成矿提供还原剂。矿化砂岩方解石胶结物碳同位素显示成矿流体有深部流体的作用,可能有地幔物质的加入;氧同位素显示成矿流体有表生流体的作用。沥青铀矿氧同位素值显示成矿流体受表生大气水作用影响。酸性火山物质方沸石化和酸性火山玻璃脱玻化为铀成矿提供铀。成矿流体为表生氧化性流体与深部的还原性流体的混合。总之,地层、阿伊尔花岗岩和火山物质可能为铀成矿提供了铀。
        To reveal the source of metallogenetic material in the Azelik uranium deposit, the paper studied its features of alteration, REE geochemistry, fluid inclusion, C-O isotope of calcite cement and O isotope of pitchblende.Alterations are gray green reduction, analcimization, devitrification of acidic volcanic glass, carbonatization,pyritization, chalcopyrite, baritization, et al. The genesis of gray green of reduction is chloritization. Analcimization and of acidic volcanics and devitrification of acidic volcanic glass provided uranium for mineralization.Positive anomaly of Eu from mineralized sandstone reveals that reductive fluid from the deep was involved into mineralizing. Gaseous compositions of fluid inclusions are H2, N2 and CO2, which present the character of gaseous compose from the deepth, and H2 is a type of strong reductive agent which provided reductive material for mineralization. Isotopic of C from calcite cement of mineralized sandstone shows that fluid from the deep was involved which maybe contains material from the mantle. Isotopic of O from calcite cement of mineralized sandstone and pitchblende show that hypergene meteorological fluid was involved. Metallogenetic fluid is the mixture of reductive fluid from the deep and oxidized fluid from the hypergene. Uranium is provided by stratum and the A?r granite mass and vitroclastic tuffs may provide uranium for mineralization.
引文
Bau M.1991.Rare earth element mobility during hydrothermal and metamorphic fluid-rock interaction and significance of the oxidation state of europium[J].Chemical Geology,93:219-230.
    Bigotte G and Obelliqne J M.1968.Découverte de minéralisations uranifères au Niger[J].Mineralium Deposita,3:317-333.
    Cazoulat M.1985.Geological environment of the uranium deposits in the Carboniferous and Jurassic sandstones of the western margin of the A?r Mountains in the Republic of Niger[A].In:IAEA ed.Geological environment of sandstone type uranium deposits[C].Vienna IAEA,1985.Vienna:IAEA.247-263.
    Ding Z J,Yao S Z,Liu C Q,Zhou Z G and Yang M G.2003.The characteristics of exhalation-sedimentary deposit of Donggouba polymetallic deposit:Evidence from ore’s REE composition[J].Acta Petrologica,19(4):792-798(in China with English abstract).
    Jean C M and RenéG.1993.Basement control in the development of the Early Cretaceous West and central African rift system[J].Tectonophysics,228:81-95.
    Klimhammer G P,Elderfield H,Edmond J M and Mitra A.1994.Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges[J].Geochimica et Cosmochimica Acta,58(23):5105-5113.
    Liu J J,He M Q,Li Z M,Liu Y P,Li C Y,Zhang Q,Yang W G and Yang A P.2004.Oxygen and carbon isotopic geochemistry of Baiyangping silber-copper polymetallic ore concentration area in Lanping Basin of Yunnan Province and its significance[J].Mineral Deposits,23(1):1-10(in China with English abstract).
    Liu S W,Shi S,Li R X,Gao Y B,Liu L F,Duan L Z,Chen B B and Zhang S N.2013.REE geochemistry of Mayuan Pb-Zn deposit on northern margin of Yangtze Plate[J].Mineral Deposits,32(5):979-988(in China with English abstract).
    Luders V,Moller P and Dulskl P.1993.REE fractionation in carbonates and fluorite[J].Monograph Series on Mineral Deposits,30(9):133-150.
    Harouna M,Disnar J R,Martinez L and Trichet J.1993.Discrepancies between different organic maturity indicators in a coal series affected by an abnormal thermal event(Viséan,Niger)[J].Chemical Geology,106:397-413.
    Ma Y B,Du X H,Zhang Z J,Xing S W,Zou Y F,LI Bin,Yang X Qand Wang Y.2013.REE geochemical characteristics of Qinchengzi stratiform/veined Pb-Zn ore district[J].Mineral Deposits,32(6):1236-1248(in China with English abstract).
    Mao J W,Li H M,Wang Y T,Zhang C Q and Wang R T.2005.The relationship between mantle-derived fluid and gold formation in the eastern Shandong Peninsula:Evidences form D-O-C-S isotopes[J].Acta Geologica Sinica,79(6):839-857(in China with English abstract).
    Marah M M,Michel C,Franck B,Boiron M C and Elmaleh A.2016.Hot fluid flows around a major fault identified by paleothermometric studies(Tim mersoi¨basin,Niger)[J].Journal of Sedimentary Research,86(2016):914-928.
    Maurice P,Sabine C,Pierre F,Olivier G,Pierre V and Ibrahim W.2005.Uranium deposits in the Arlit area(Niger)[A].In:Mao J Wand Frank P,eds.Mineral deposit research:Meeting the global challenge proceedings of the eighth biennial SGA meeting Beijing,China[C].Mineral Deposit Research,2005.Berlin:Springer.303-305.
    Michard A,Albarede F,Michard G,Minster J F and Charlou J L.1983.Rare earth elements and uranium in high temperature solutions from East Pacific rise hydrothermalvent field(13°N)[J].Nature,303:795-797.
    Mills R and Elderfield H.1995.Rare earth element geochemistry of hydrothermal deposits from the active TAG Mount,26°N mid-Atlantic Ridge[J].Geochimica et Cosmochimica Acta,59(17):3511-3524.
    Nie F J,Lin S X,Yan Z B,Rao M H,Yang Y J,Zhang C Y and Yan YJ.2010.Hydrothermal mineralizatin of uranium in sandstone,Teguida,Niger[J].Acta Geoscientica Sinica,31(6):819-831(in China with English abstract).
    Pen J T and Hu R Z.2001.Carbon and oxygen isotope systematics in the Xikuangshan giant antimony deposit,central Hunan[J].Geological Review,47(1):34-41(in China with English abstract).
    Selley R C.1997.African basins[M].New York,Elsevier:89-103.
    Sophie B,Patricia P,Daniel B,Sardini P and Wattinnemorice A.2016.Occurrence of tosudite in the guezouman,tarat and tchirezrine 2Formations,hosts of uranium deposits in Niger(Tim Merso?basin)[J].Clay Minerals,51:635-651.
    Spangenberg J,Fontbote L,Sharp Z D and Hunziker J.1996.Carbon and oxygen isotope study of hydrothermal carbonates in the zinclead deposits of the San Vicente district,central Peru:A quantitative modeling on mixing processes and CO2degassing[J].Chemical Geology,133:289-315.
    Sverjensky D A.1984.Europium equilibrium in aqueous solution[J].Earth Planet Science Letters,67(1):70-78.
    Xia F,Meng H,Nie F J,Yan Z B,Zhang C Y and Li M G.2016.Characteristics of chlorite form the Nalinggou uranium deposit in the Ordos basin and its geological significance[J].Acta Geologica Sinica,90(12):3473-3482.
    Xu Q.2013.Research on factors of control of sandstone type uranium mineralization in Azelike area,Niger[D].Supervisor:Qin M K.Beijing:Beijing Research Institute of Uranium Geology.159-162(in China with English abstract).
    Yahaya M and Lang E J.2000.Tectonic and sedimentary evolution of the Akokan Unit during Visean times in the Tim Mersdi Basin,Arlit region,Niger[J].Journal of African Earth Sciences,(31)2:415-431.
    Zanguina M,Bruneton A and Gronnard R G.1998.An introduction to the petroleum potential of Niger[J].Journal of Petroleum Geology,21(1):83-103.
    丁振举,姚书振,刘丛强,周宗桂,杨明国.2003.东沟坝多金属矿床喷流沉积成矿特征的稀土元素地球化学示踪[J].岩石学报,19(4):792-798.
    刘家军,何明勤,李志明,刘玉平,李朝阳,张乾,杨伟光,杨爱平.2004.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义[J].矿床地质,23(1):1-10.
    刘淑文,石顺,李荣西,高云宝,刘玲芳,段立志,陈宝贇,张少妮.2013.扬子板块北缘马元铅锌矿床稀土元素地球化学研究[J].矿床地质,32(5):979-988.
    马玉波,杜晓慧,张增杰,邢树文,邹跃飞,李斌,杨秀清,王岩.2013.青城子层状/脉状铅锌矿床稀土元素地球化学特征及地质意义[J].矿床地质,32(6):1236-1248.
    毛景文,李厚民,王义天,张长青,王瑞廷.2005.地幔流体参与胶东金矿成矿作用的氢氧碳硫同位素证据[J].地质学报,79(6):839-857.
    聂逢君,林双幸,严兆彬,饶明辉,杨永纪,张成勇,严永杰.2010.尼日尔特吉达地区砂岩中铀的热流体成矿作用[J].地球学报,31(6):819-831.
    彭建堂,胡瑞忠.2001.湘中锡矿山超大型锑矿床的碳、氧同位素体系[J].地质论评,47(1):34-41.
    夏菲,孟华,聂逢君,严兆彬;张成勇;李满根.2016.鄂尔多斯盆地纳岭沟铀矿床绿泥石特征及地质意义[J].地质学报,90(12):3473-3482.
    许强,2013.尼日尔阿泽里克地区砂岩型铀矿控矿因素研究(博士论文)[D].导师:秦明宽.北京:核工业北京地质研究院.159-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700