用户名: 密码: 验证码:
赣南淘锡坑钨矿床云英岩中含CO_2包裹体的发现及意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Discovery of CO2-bearing inclusions in greisen from the Taoxikeng tungsten deposit,southern Jiangxi Province and its metallogenic significance
  • 作者:刘永超 ; 李建康 ; 赵正 ; 刘善宝 ; 李兴杰
  • 英文作者:LIU Yongchao;LI Jiankang;ZHAO Zheng;LIU Shanbao;LI Xingjie;MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources,Chinese Academy of Geological Sciences;
  • 关键词:淘锡坑钨矿 ; 云英岩 ; 流体包裹体 ; 熔体包裹体 ; CO_2 ; 成矿流体
  • 英文关键词:Taoxikeng tungsten deposit;;greisen;;fluid inclusion;;melt inclusion;;CO_2;;ore-formingfluid
  • 中文刊名:地质学报
  • 英文刊名:Acta Geologica Sinica
  • 机构:中国地质科学院矿产资源研究所自然资源部成矿作用与资源评价重点实验室;
  • 出版日期:2019-03-15
  • 出版单位:地质学报
  • 年:2019
  • 期:03
  • 基金:国家重点研发计划项目(编号2016YFC0600204,2016YFC0600208);; 中央级公益性科研院所基本科研业务费项目(编号JYYWF201814);; 中国地质调查局地质调查项目(编号DD20160056)联合资助成果
  • 语种:中文;
  • 页:195-205
  • 页数:11
  • CN:11-1951/P
  • ISSN:0001-5717
  • 分类号:P618.67
摘要
淘锡坑矿床是赣南地区一大型黑钨矿矿床,为揭示成矿流体的早期演化特征,深入认识钨元素的富集机制,本文对淘锡坑钨矿床云英岩中流体和熔体包裹体进行了岩相学、激光拉曼光谱和显微测温研究。结果表明,云英岩中的流体包裹体可以划分为富液相两相水溶液包裹体、富气相含CO_2水溶液包裹体和纯气相包裹体三类,流体为中—高温、低盐度、低密度的NaCl-H_2O-CO_2-CH_4体系。熔体包裹体主要由钠长石、石英、少量流体相和气相组成,气相部分含有CH_4和微量CO_2。在岩浆热液演化早期阶段,流体氧化还原条件可能发生了改变,发生了CH_4到CO_2的转变,致使流体中CO_2含量增高。在流体演化过程中发生的以CO_2散逸为特征的流体不混溶作用可能是淘锡坑钨矿床形成的重要机制。CO_2对于钨元素的迁移和富集具有重要作用,CO_2的散逸是诱发黑钨矿沉淀富集的重要因素之一。
        The Taoxikeng tungsten deposit is a large wolframite deposit in southern Jiangxi Province. In order to reveal the early evolution characteristics of ore-forming fluids and the enrichment mechanism of tungsten, we carried out study of fluid and melt inclusions in greisen by means of petrography, laser Raman spectroscopy and microthermometric experiments. The results show that fluid inclusions can be divided into three types: liquid-rich two-phase aqueous inclusions, vapor-rich CO_2-bearing inclusions and pure gas inclusions. The ore-forming fluids are characterized by medium-high temperature, low salinity and low density, roughly belonging to NaCl-H_2O-CO_2-CH_4 system. Melt inclusions are mainly composed of albite, quartz, with minor amount of fluid and gas, and gas phase contains CH_4 and trace CO_2. In the early stage of magmatic hydrothermal evolution, the redox conditions of the fluid might have been changed, resulting in a shift of CH_4 to CO_2 and an increase in CO_2 content of the fluid. Fluid immiscibility, which is characterized by the dissipation of CO_2, could be the main mechanism responsible for the formation of the Taoxikeng tungsten deposit. Carbon dioxide plays a significant role in the migration and enrichment of tungsten, and the dissipation of CO_2 component is one of the important factors that induce the precipitation and enrichment of wolframite.
引文
Bodnar R J. 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Coschimica Acta, 57: 683~684.
    Chen L L, Ni P, Li W S, Ding J Y, Pan J Y, Wang J J, Yang Y L. 2018. The link between fluid evolution and vertical zonation at the Maoping tungsten deposit, Southern Jiangxi, China: Fluid inclusion and stable isotope evidence. Journal of Geochemical Exploration, 192:18~32.
    Chen Yuchuan, Wang Denghong, Xu Zhigang, Huang Fan. 2014. Outline of regional metallogeny of ore deposits associated with the Mesozoic magmatism in South China. Geotectonica et Metallogenia, 38 (2): 219~229 (in Chinese with English abstract).
    Chen Zhenghui, Wang Denghong, Qu Wenjun, Chen Yuchuan, Wang Pingan, Xu Jianxiang, Zhang Jiajing, Xu Minlin. 2006. Geological characteristics and mineralization age of Taoxikeng tungsten deposit in Chongyi County, southern Jiangxi Province, China. Geological Bulletin of China, 25 (4): 496~501 (in Chinese with English abstract).
    Chi G X, Haid T, Quirt D, Fayek M, Blamey N, Chu H X.2016.Petrography, fluid inclusion analysis, and geochronology of the End uranium deposit, Kiggavik, Nunavut, Canada. Mineralium Deposita, 52: 211~232.
    Craw D. 1992.Fluid evolution, fluid immiscibility and gold deposition during Cretaceous-Recent tectonics and uplift of the Otago and Alpine Schist, New Zealand. Chemical Geology, 98: 221~236.
    Drummond S E, Ohmoto H. 1985.Chemical evolution and mineral deposition in boiling hydrothermal systems. Economic Geology, 80: 126~147.
    Fang Guicong, Chen Yuchuan, Zhao Zheng, Chen Zhenghui. 2017.Metallogenic model of Yudu-Ganxian W-polymetallic ore-concentrated area in South Jiangxi Province. Geological Review, 63 (supp.): 215~216 (in Chinese).
    Frantz J D, Popp R K, Hoering T C. 1992.The compositional limits of fluid immiscibility in the system H2O-NaCl-CO2 as determined with the use of synthetic fluid inclusions in conjunction with mass spectrometry. Chemical Geology, 98: 237~255.
    Graupner T, Kempe U, Dombon E, P?tzold O, Leeder O, Spooner E T C. 1999. Fluid regime and ore formation in the tungsten (-yttrium) deposits of Kyzyltau (Mongolian Altai): evidence for fluid variability in tungsten-tin ore systems. Chemical Geology, 154: 21~58.
    Guo Chunli, Lin Zhiyong, Wang Denghong, Chen Wen, Zhang Yan, Feng Chengyou, Chen Zhenghui, Zeng Zailin, Cai Ruqing. 2008. Petrologic characteristics of the granites and greisens and muscovite 40Ar/39Ar dating in the Taoxikeng tungsten polymetallic deposit, Southern Jiangxi Province. Acta Geologica Sinica, 82 (9): 1274~1284 (in Chinese with English abstract).
    Guo Chunli. 2010. Study on mineralization-related Mesozoic granitoids in Chongyi-Shangyou Counties, South Jiangxi, and comparison to corresponding granitoids in the Nanling region, South China. Chinese Academy of Geological Sciences, 1~239(in Chinese with English abstract).
    Guo C L, Mao J W, Bierlein F, Chen Z H, Chen Y C, Li C B, Zeng Z L. 2011. SHRIMP U-Pb (zircon), Ar-Ar (muscovite) and Re-Os (molybdenite) isotopic dating of the Taoxikeng tungsten deposit, South China Block. Ore Geology Reviews, 43: 26~39.
    Hei Huan. 2012. The research on the geological characteristics and mineralization of Taoxikeng tungsten deposit, South Jiangxi. Chang'an University, 1~109 (in Chinese with English abstract).
    Higgins N C. 1980. Fluid inclusion evidence for the transport of tungsten by carbonate complex in hydrothermal solutions. Canadian Journal of Earth Sciences, 17: 823~830.
    Higgins N C, Kerrich R. 1982. Progressive 18O depletion during CO2 separation from a carbon dioxide-rich hydrothermal fluid: evidence from the Grey River tungsten deposit, Newfoundland. Canadian Journal of Earth Sciences, 19: 94~100.
    Hinsberg V J V, Berlo K, Migdisov A A, Williams-Jones A E. 2016. CO2-fluxing collapses metal mobility in magmatic vapour. Geochemical Perspective Letters, 2: 169~177.
    Kokh M A,Akinfiev N N, Pokrovski G S, Salvi S, Guillaume D. 2017. The role of carbon dioxide in the transport and fractionation of metals by geological fluids. Geochimica et Cosmochimica Acta, 197: 433~466.
    Li J K, Liu Y C, Zhao Z, Chou I M.2018. Roles of carbonate/CO2 in the formation of quartz-vein wolframite deposits: Insight from the crystallization experiments of huebnerite in alkali-carbonate aqueous solutions in a hydrothermal diamond-anvil cell. Ore Geology Reviews, 95: 40~48.
    Li W S, Ni P, Pan J Y, Wang G G, Chen L L, Yang Y L, Ding J Y. 2018. Fluid inclusion characteristics as an indicator for tungsten mineralization in the Mesozoic Yaogangxian tungsten deposit, central Nanling district, South China. Journal of Geochemical Exploration, 192: 1~17.
    Linnen R L, Williams-Jones A E. 1994.The evolution of pegmatite-hosted Sn-W mineralization at Nong Sua, Thailand: Evidence from fluid inclusions and stable isotopes. Geochimica et Cosmochimica Acta, 58 (2): 735~747.
    Liu Chang, Zhao Zheng, Lu Lina, Zeng Zailin, Liu Cuihui, Xu Hong. 2018. Metallogenic fluid study of the Yanqian skarn type tungsten deposit in eastern Nanling region. Acta Geologica Sinica, 92(12): 2485~2507 (in Chinese with English abstract).
    Liu Yingjun, Ma Dongsheng. 1987. Geochemistry of Tungsten. Beijing: Science Press, 1~222 (in Chinese).
    Liu Y J, Ma D S. 1993. Vein-type tungsten deposits of China and adjoining regions. Ore Geology Reviews, 8: 233~246.
    Liu Yongchao, Li Jiankang, Zhao Zheng. 2017. A preliminary experimental study of the crystallization of wolframite using hydrothermal diamond anvil cell. Earth Science Frontiers, 24 (5): 159~166 (in Chinese with English abstract).
    Lowenstern J B. 2001. Carbon dioxide in magmas and implications for hydrothermal systems. Mineralium Deposita, 36: 490~502.
    Lu Huanzhang, Fan Hongrui, Ni Pei, Ouguang Xi, Shen Kun, Zhang Wenhuai. 2004. Fluid Inclusions. Beijing: Science Press, 1~486 (in Chinese).
    Mangas J, Arribas A. 1988. Hydrothermal fluid evolution of the Sn-W mineralization in the Parrilla ore deposit (Caceres, Spain). Journal of the Geological Society, 145: 147~155.
    Manning C E, Shock E L, Sverjensky D A. 2013.The chemistry of carbon in aqueous fluids at crustal and upper-mantle conditions: experimental and theoretical constraints. Reviews in Mineralogy & Geochemistry, 75: 109~148.
    Mao Jingwen, Xie Guiqing, Guo Chunli, Chen Yuchuan. 2007. Large-scale tungsten-tin mineralization in the Nanling region, South China: Metallogenic ages and corresponding geodynamic processes. Acta Petrologica Sinica, 23 (10): 2329~2338 (in Chinese with English abstract).
    Naden J, Shepherd T J. 1989. Role of methane and carbon dioxide in gold deposition. Nature, 342: 793~795.
    Naumov V B, Dorofeev V A, Mironova O F. 2011.Physicochemical parameters of the formation of hydrothermal deposits: A fluid inclusion study. I. Tin and tungsten deposits. Geochemistry International, 49 (10): 1002~1021.
    Ni P, Wang X D, Wang G G, Huang J B, Pan J Y, Wang T G. 2015.An infrared microthermometric study of fluid inclusions in coexisting quartz and wolframite from Late Mesozoic tungsten deposits in the Gannan metallogenic belt, South China. Ore Geology Reviews, 65: 1062~1077.
    Phillips G N, Evans K A. 2004.Role of CO2 in the formation of gold deposits. Nature, 29: 860~863.
    Pirajno F.2009. Hydrothermal Processes and Mineral Systems. Netherlands: Springer, 1~1250.
    Ramboz C, Schnapper D, Dubessy J. 1985. The P-V-T-X-fO2 evolution of H2O-CO2-CH4-bearing fluid in a wolframite vein: Reconstruction from fluid inclusion studies. Geochimica et Cosmochimica Acta, 49: 205~219.
    Rios F J, Villas R N, Fuzikawa K. 2003. Fluid evolution in the Pedra Preta wolframite ore deposit, Paleoproterozoic Musa granite, eastern Amazon craton, Brazil. Journal of South American Earth Sciences, 15: 787~802.
    Roedder E. 1984. Fluid Inclusions. Reviews in Mineralogy, 12: 1~644.
    Shepherd T J, Rankin A H, Alderton D H M. 1985. A practical guide to fluid inclusion studies. Blackie & Son Limited, 1~154.
    So C S, Yun S T. 1994. Origin and evolution of W-Mo-producing fluids in a granitic hydrothermal system: geochemical studies of quartz vein deposits around the Susan Granite, Hwanggangri District, Republic of Korea. Economic Geology, 89: 246~267.
    Song Shengqiong, Hu Ruizhong, Bi Xianwu, Wei Wenfeng, Shi Shaohua. 2011. Fluid inclusion geochemistry of the Taoxikeng tungsten deposit in southern Jiangxi Province, China. Geochimica, 40 (3): 237~248 (in Chinese with English abstract).
    Spycher N F, Reed M. 1989.Evolution of a broadlands-type epithermal ore fluid along alternative P-T paths: implications for the transport and deposition of base, precious, and volatile metals. Economic Geology, 84: 328~359.
    Tarantola A, Mullis J, Vennemann T, Dubessy J, Capitani C D. 2007. Oxidation of methane at the CH4/H2O-(CO2) transition zone in the external part of the Central Alps, Switzerland: Evidence from stable isotope investigations. Chemical Geology, 237: 329~357.
    Truche L, Bazarkina E F, Berger G, Caumon M C, Bessaque G, Dubessy J. 2016.Direct measurement of CO2 solubility and pH in NaCl hydrothermal solutions by combining in-situ potentiometry and Raman spectroscopy up to 280℃ and 150 bar. Geochimica et Cosmochimica Acta, 177: 238~253.
    Tu Shaoxiong, Wang Xiongwu. 2002. Some significant advances in granitoid researches abroad in 1990s. Acta Petrologica et Mineralogica, 21 (2): 107~118 (in Chinese with English abstract).
    Wang Denghong,Zhao Zheng, Liu Shanbao, Guo Naxin, Liang Ting, Chen Wei, Zhou Xinpeng. 2016. Patterns of metallogenesis of Jiulongnao ore field in the east section of the Nanling region and direction for prospecting. Acta Geologica Sinica, 90 (9): 2399~2411 (in Chinese with English abstract).
    Wang Liankui, Rong Jiashu, Ma Daquan, Liu Jiayuan, Zhou Weixun, Deng Shikai. 1983. Differentiation of granite from different sources in Nanling area with magnetite and ilmenite. Geology and Exploration, (6): 2~9 (in Chinese).
    Wang X L, Chou I M, Hu W X, Burruss R C, Sun Q, Song Y C. 2011.Raman spectroscopic measurements of CO2 density: Experimental calibration with high-pressure optical cell (HPOC) and fused silica capillary capsule (FSCC) with application to fluid inclusion observations. Geochimica et Cosmochimica Acta, 75: 4080~4093.
    Wang Xudong, Ni Pei, Yuan Shunda, Wu Shenghua. 2012. Fluid inclusion studies of the Huangsha quartz-vein type tungsten deposit, Jiangxi Province. Acta Petrologica Sinica, 28 (1): 122~132 (in Chinese with English abstract).
    Wood S A, Samson I M. 2000. The hydrothermal geochemistry of tungsten in granitoid environments: I. relative solubilities of ferberite and scheelite as a function of T, P, pH, and mNaCl. Economic Geology, 95: 143~182.
    Xie Xing, Liang Ting, Lu Lin, Zhao Zheng, Chen Zhenghui, Chen Wei, Ding Ming. 2017. Chemical composition and crystal texture of the Pangushan and Taoxikeng wolframite in southern Jiangxi and its indication significance. Acta Geologica Sinica, 91 (4): 876~895 (in Chinese with English abstract).
    Xiong Y Q, Shao Y J, Zhou H D, Wu Q H, Liu J P, Wei H T, Zhao R C, Cao J Y. 2017. Ore-forming mechanism of quartz-vein-type W-Sn deposits of the Xitian district in SE China: Implications from the trace element analysis of wolframite and investigation of fluid inclusions. Ore Geology Reviews, 83: 152~173.
    Xu Yongsheng, Zhang Benren, Han Yinwen. 1992. An experimental study on the partitioning of tungsten between aqueous fluid and silicate melts. Geochimica (3): 272~281 (in Chinese with English abstract).
    Yin Xianbo, Zhang Dehui, Wang Chensheng, Zhao Guanjian. 2011. Characteristics of fluid inclusion for typical tungsten, stannary vein deposit and porphyry molybdenum deposit in China. Journal of Guilin University of Technology, 31 (4): 524~532 (in Chinese with English abstract).
    Yu Chongwen. 2004.Fractal dilatation of multiple hydraulic fracturing. Earth Science Frontiers, 11 (1): 11~44 (in Chinese with English abstract).
    Zhang Daquan, Feng Chengyou, Li Daxin, Chen Yuchuan, Zeng Zailin. 2012. Fluid inclusions characteristics and ore genesis of Taoxikeng tungsten and tin deposit in Chongyi County, Jiangxi Province. Journal of Jilin University (Earth Science Edition), 42 (2): 374~383 (in Chinese with English abstract).
    Zhang Dehui. 1997. Some new advances in ore-forming fluid geochemistry on boiling and mixing of fluids during the progress of hydrothermal deposits. Advance in Earth Sciences, 12 (6): 546~552 (in Chinese with English abstract).
    参考文献陈毓川,王登红,徐志刚,黄凡. 2014. 华南区域成矿和中生代岩浆成矿规律概要. 大地构造与成矿学,38(2):219~229.
    陈郑辉,王登红,屈文俊,陈毓川,王平安,许建祥,张家菁,徐敏林. 2006. 赣南崇义地区淘锡坑钨矿的地质特征与成矿时代. 地质通报,25(4):496~501.
    方贵聪,陈毓川,赵正,陈郑辉. 2017. 赣南于都-赣县钨多金属矿集区成矿模式. 地质论评,63(增刊):215~216.
    郭春丽,蔺志永,王登红,陈文,张彦,丰成友,陈郑辉,曾载淋,蔡汝青. 2008. 赣南淘锡坑钨多金属矿床花岗岩和云英岩岩石特征及云英岩中白云母40Ar/39Ar定年. 地质学报,82(9):1274~1284.
    郭春丽. 2010. 赣南崇义—上犹地区与成矿有关中生代花岗岩类的研究及对南岭地区中生代成矿花岗岩的探讨. 中国地质科学院,1~239.
    黑欢. 2012. 赣南地区淘锡坑钨矿床地质特征及成矿作用研究. 长安大学,1~109.
    刘畅,赵正,陆丽娜,曾载淋,刘翠辉,许虹.2018.南岭东段岩前矽卡岩型钨矿成矿流体研究.地质学报,92(12):2485~2507.
    刘英俊,马东升. 1987. 钨的地球化学. 北京:科学出版社,1~222.
    刘永超,李建康,赵正. 2017. 利用热液金刚石压腔开展黑钨矿结晶实验的初步研究. 地学前缘,24(5):159~166.
    卢焕章,范宏瑞,倪培,欧光习,沈昆,张文淮. 2004. 流体包裹体. 北京:科学出版社,1~486.
    毛景文,谢桂青,郭春丽,陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景. 岩石学报,23(10):2329~2338.
    宋生琼,胡瑞忠,毕献武,魏文凤,石少华. 2011. 赣南淘锡坑钨矿床流体包裹体地球化学研究. 地球化学,40(3):237~248.
    涂绍雄,汪雄武. 2002. 20世纪90年代国外花岗岩类研究的某些重大进展. 岩石矿物学杂志,21(2):107~118.
    王登红,赵正,刘善宝,郭娜欣,梁婷,陈伟,周新鹏. 2016. 南岭东段九龙脑矿田成矿规律与找矿方向. 地质学报,90(9):2399~2411.
    王联魁,戎嘉树,马大铨,刘家远,周维勋,邓诗锴. 1983. 用磁铁矿和钛铁矿划分南岭地区不同来源花岗岩的探讨. 地质与勘探,(6):2~9.
    王旭东,倪陪,袁顺达,吴胜华. 2012. 江西黄沙石英脉型钨矿床流体包裹体研究. 岩石学报,28(1):122~132.
    谢星,梁婷,鲁麟,赵正,陈郑辉,陈伟,丁明. 2017. 赣南盘古山和淘锡坑黑钨矿化学成分和晶体结构及指示意义. 地质学报,91(4):876~895.
    许永胜,张本仁,韩吟文. 1992. 钨在水流体和硅酸盐熔体相间分配的实验研究. 地球化学,(3):272~281.
    印贤波,张德会,王晨晟,赵关健. 2011. 中国典型脉型钨、锡矿床和斑岩钼矿流体包裹体特征. 桂林理工大学学报,31(4):524~532.
    於崇文. 2004. 多重水力断裂的分形扩张. 地学前缘,11(1):11~44.
    张大权,丰成友,李大新,陈毓川,曾载淋. 2012. 江西省崇义县淘锡坑钨锡矿床流体包裹体特征. 吉林大学学报(地球科学版),42(2):374~383.
    张德会. 1997. 流体的沸腾和混合在热液成矿中的意义. 地球科学进展,12(6):546~552.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700