用户名: 密码: 验证码:
东秦岭稀有金属伟晶岩的类型、内部结构、矿化及远景——兼与阿尔泰地区对比
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Types, internal structural patterns, mineralization and prospects of rareelement pegmatites in East Qinling Mountain in comparison with features of Chinese Altay
  • 作者:秦克章 ; 周起凤 ; 唐冬梅 ; 王春龙
  • 英文作者:QIN KeZhang;ZHOU QiFeng;TANG DongMei;WANG ChunLong;Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences;Innovation Academy for Earth Sciences, Chinese Academy of Sciences;College of Earth and Planetary Sciences, University of Chinese Academy of Sciences;Institute of Mineral Resources Research,China Metal-lurgical Geology Bureau;Faculty of Earth Resources, China University of Geosciences;
  • 关键词:地质学 ; 花岗伟晶岩 ; 内部结构带 ; 稀有金属矿化类型 ; 东秦岭 ; 阿尔泰
  • 英文关键词:geology;;granitic pegmatite;;internal structural patterns;;rare element mineralization;;East Qinling;;Altay
  • 中文刊名:矿床地质
  • 英文刊名:Mineral Deposits
  • 机构:中国科学院矿产资源研究重点实验室中国科学院地质与地球物理研究所;中国科学院地球科学研究院;中国科学院大学地球与行星科学学院;中国冶金地质总局矿产资源研究院;中国地质大学资源学院;
  • 出版日期:2019-10-15
  • 出版单位:矿床地质
  • 年:2019
  • 期:05
  • 基金:国家自然科学基金项目(编号:41602095);; 岩石圈演化国家重点实验室开放课题(编号:201304);; 国家“十二五”科技支撑计划新疆305项目(编号:2011BAB06B03-04)联合资助
  • 语种:中文;
  • 页:39-51
  • 页数:13
  • CN:11-1965/P
  • ISSN:0258-7106
  • 分类号:P618.6
摘要
东秦岭地区和阿尔泰造山带均产出大量稀有金属伟晶岩,是中国重要的稀有金属产地。前者工作程度低,远景尚不明朗;后者规模巨大。开展成矿条件对比研究十分必要。东秦岭地区产出铍矿、锂矿和复杂稀有金属矿,以锂矿化为主,伟晶岩类型复杂,包括绿柱石-铌铁矿型、复杂型锂辉石亚型、复杂型锂云母亚型和钠长石-锂辉石型。阿尔泰稀有金属伟晶岩发育多种稀有金属矿化组合,伟晶岩类型为绿柱石-铌铁矿型、复杂型锂辉石亚型和钠长石-锂辉石型。东秦岭稀有金属伟晶岩的内部结构分带型式包括对称分带结构、均一结构和分层结构,阿尔泰稀有金属伟晶岩以对称分带结构为主,也见均一结构。东秦岭与阿尔泰稀有金属矿石矿物相近,东秦岭产出更多含锂磷酸盐矿物。东秦岭稀有金属伟晶岩分异演化程度相对集中且高,阿尔泰稀有金属伟晶岩分异演化程度跨度大。东秦岭和阿尔泰锂矿的锂矿化主要发生于岩浆就位前,复杂稀有金属矿稀有金属富集作用发生在岩浆就位前和就位后,但阿尔泰复杂稀有金属矿经历了更为复杂和极度的分异演化过程。东秦岭稀有金属伟晶岩可能与同期花岗岩为同一熔融事件的产物,与早期花岗岩来自同一物质来源。阿尔泰稀有金属伟晶岩与花岗岩关系复杂,但大量早期花岗岩的形成提高了地壳成熟度,有利于形成晚期稀有金属伟晶岩。东秦岭稀有金属伟晶岩产出于北秦岭单元中,形成于晚造山和造山后阶段,集中于造山后阶段,稀有金属矿化呈多期断续叠加特征。阿尔泰稀有金属伟晶岩主要产出于琼库尔-阿巴宫地体和中阿尔泰山地体内,集中于造山后和非造山阶段。伟晶岩岩浆活动受控于物质来源和造山作用。储存稀有金属的岩石在造山作用中熔融,发生多期的大规模花岗质岩浆活动,稀有金属通过长期复杂的分异演化过程在残余熔体中不断富集。这种富挥发分和稀有金属的过铝质硅酸盐岩浆随后上升就位,可经后续冷却结晶和不混溶作用进一步富集稀有金属,从而形成稀有金属伟晶岩。东秦岭具有形成含稀有金属高度分异演化岩浆的有利条件,该区具有寻找铍矿和复杂稀有金属矿的潜力。
        The East Qinling and Chinese Altay host lots of rare-element(REL) pegmatite dykes and both are important producing area for rare element. The former has a low level of geological work with uncertain REL prospects,while the latter has a huge REL reserve. Therefore, it is essential to make comparative studies on ore-forming conditions. The East Qinling is dominated by lithium deposits, although there are deposits of beryllium, lithium and multi REL. The pegmatite types are beryl-columbite type, spodumene subtype and lepidolite subtype in complex type and albite-spodumene type. The REL pegmatites in the Chinese Altay show multi REL mineralization types and belong to beryl-columbite type, spodumene subtype in complex type and albite-spodumene type, respectively. The internal structures of the REL pegmatites in the East Qinling are zoned, homogeneous and layered, while those in the Chinese Altay are mainly zoned and occasionally homogeneous. The REL minerals from the East Qinling are similar to those of the Chinese Altay and relatively enriched in lithium-bearing phosphates. The REL pegmatites in the East Qinling are mostly highly evolved on accounts of major lithium deposits, while the degree of evolution for the REL pegmatites in the Chinese Altay is in a wide range due to various REL deposits. In the East Qinling and Chinese Altay, the mineralization processes for the lithium deposits mainly occurred before emplacement and those of the complex REL deposits happen before and after emplacement, but the complex REL deposits in the Chinese Altay experience more complex and extremely high fractional and evolution processes. In the East Qinling, the REL pegmatites and coeval granites might be both of products of the same melting event,while the REL pegmatites and the earlier granites might have the same origin. The relationships of granites and REL pegmatites in the Chinese Altay are more complex and the earlier granites might result in a fertile crust which is beneficial to formation of the REL pegmatites. The REL pegmatites in the East Qinling occurred in the North Qinling unit and formed in late-orogenic and post-orogenic stages, concentrating in post-orogenic stage.The REL pegmatites in the Chinese Altay are mainly limited in the Qiongkuer-Abagong and Middle Altayshan terranes and concentrated in the post-orogenic and anorogenic stages. The pegmatite magma activities are controlled by origin and orogeny. The rocks hosting REL are partial melted during orogeny. Accompanied with forming large-scale granitic intrusions, REL are continuously enriched during these long and complex fractionation and evolution processes. Finally, the peraluminous silicate magma enriched in fluxes and REL is produced and emplaced to form REL pegmatites on the basis of subsequent crystallization and liquid immiscibility. The East Qinling are favorable to form highly evolved silicate magma containing REL and are also potential area for beryllium and complex REL pegmatites.
引文
Breaks F W and Moore J M JR.1992.The Ghost Lake batholith,Superior Province of Northwestern Ontario:A fertile,S-type peraluminous granite-rare element pegmatite system[J].The Canadian Mineralogist,30:835-875
    Cai K D,Sun M,Yuan C,Zhao G C,Xiao W J,Long X P and Wu F Y.2011.Prolonged magmatism,juvenile nature and tectonic evolution of the Chinese Altay,NW China:Evidence from zircon U-Pb and Hf isotopic study of Paleozoic granitoids[J].Journal of Asian Earth Sciences,42(5):949-968.
    ?ernyP,Meintzer R E and Anderson A J.1985.Extreme fractionation in rare-element granitic pegmatites:Selected examples of data and mechanisms[J].The Canadian Mineralogist,23:382-421.
    ?ernyP.1991a.Rare-element granitic pegmatites.Part I:Anatomy and internal evolution pegmatite deposits[J].Geoscience Canada,18:49-67.
    ?ernyP.1991b.Rare-element granitic pegmatites.Part II:regional to global environments and petrogenesis[J].Geoscience Canada,18:68-81.
    ?ernyP and Ercit T S.2005.The classification of granitic pegmatites revisited[J].The Canadian Mineralogist,43:2005-2026.
    Chen F W,Li H Q,Wang D H,Cai H and Chen W.2000.New chronological evidence for Yanshanian diagenetic mineralization in China’s Altay orogenic belt[J].Chinese Science Bulletin,45(2):108-114.
    Evensen J M,London D and Wendlandt R F.1999.Solubility and stability of beryl in granitic melts[J].American Mineralogist,84:733-745.
    Hulsbosch N,Hertogen J,Dewaele S,AndréL and Muchez P.2014.Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites(Rwanda):Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups[J].Geochimica et Cosmochimica Acta,132:349-374.
    Jahns B M and Burnham C W.1969.Experimental studies of pegmatite genesis:I.A model for the derivation and crystallization of granitic pegmatites[J].Econ.Geol.,64:843-864.
    Li J K,Zou T R,Wang D H and Ding X.2017.A Review of beryllium metallogenic regularity in China[J].Mineral Deposits,36(4):951-978(in Chinese with English abstract).
    Li J K,Li P,Wang D H and Li X J.2019.A review of niobium and tantalum metallogenic regularity in China[J].Chinese Science Bulletin,64,doi:10.1360/N972018-00933(in Chinese).
    Linnen R L and Keppler H.1997.Columbite solubility in granitic melts:consequences for the enrichment and fractionation of Nb and Ta in the earth’s crust[J].Contributions to Mineralogy and Petrology,128:213-227.
    Linnen R L.1998.The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li+F:Constraints for mineralization in rare metal granites and pegmatites[J].Econ.Geol.,93:1013-1025.
    London D.2018.Ore-forming processes within granitic pegmatites[J].Ore Geology Reviews,101:349-383.
    Lu X X,Zhu C H,Gu D M,Zhang H M,Wu M and Wu Y.2010.The main geological and metallogenic characteristics of granitic pematite in eastern Qinling Belt[J].Geological Review,56(1):21-30(in Chinese with English abstract).
    Luan S W.1979.Some Geochemical features of a rare element-bearing granite-pegmatite in the eastern Qinling Range[J].Geochimica,4:322-330(in Chinese with English abstract).
    Luan S W.1985.Mineralogy,geochemistry and economic geology of rare elements granite in the eastern Qinling Orogen[C].Abstracts of Papers of National Pegmatite Academic Symposium.1-3(in Chinese).
    LüZ H,Zhang H,Tang Y and Guan S J.2012.Petrogenesis and magmatic-hydrothermal evolution time limitation of Kelumute No.112 pegmatite in Altay,Northwestern China:Evidence from zircon U-Pb and Hf isotopes[J].Lithos,154:374-391.
    LüZ H,Zhang H,Tang Y,Liu Y L and Zhang X.2018.Petrogenesis of syn-orogenic rare metal pegmatites in the Chinese Altay:evidences from geology,mineralogy,zircon U-Pb age and Hf isotope[J].Ore Geology Reviews,95:161-181.
    Ma Z L,Zhang H,Tang Y,LüZ H,Zhang X and Zhao J Y.2015.Zircon U-Pb geochronology and Hf isotopes of pegmatites from the Kaluan mining area in the Altay,Xinjiang and their genetic relationship with the Halong granite[J].Geochimica,44(1):9-26(in Chinese with English abstract).
    Martin R F and Vito C D.2005.The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting[J].The Canadian Mineralogist,43:2027-2048.
    Qin K Z.2000.Metallogeneses in relationship to Central-Asia orogeneses in Northern Xinjiang[R].Post-Doctoral Research Report,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing.1-195(in Chinese with English abstract).
    Qin K Z,Xiao W J,Zhang L C,Xu X W,Hao J,Sun S and Li JL.2005.Eight stages of major ore deposits in northern Xinjiang,NW-China:Clues and constraints on the tectonic evolution and continental growth of Central Asia[A].In:Mao J W and Frank Beds.Mineral deposit research:Meeting the global challenge[C].Springer,Volume 2:1327-1330.
    Qin K Z,Shen M D,Tang D M,Guo Z L,Zhou Q F,Wang C L,Guo XJ,Tian Y and Ding J G.2013.Types and ages of pegmatite raremetals mineralization in Altay orogenic belt[J].Xinjiang Geology,31(Supp.):1-7(in Chinese with English abstract).
    Qin Z W,Wu Y B,Wang H,Gao S,Zhu L Q,Zhou L and Yang S H.2014.Geochronology,geochemistry,and isotope compositions of Piaochi S-type granitic intrusion in the Qinling orogen,Central China:Petrogenesis and tectonic significance[J].Lithos,202-203:347-362.
    Qin Z W,Wu Y B,Siebel W,Gao S,Wang H,Abdallsamed M I M,Zhang W X and Yang S.2015.Genesis of adakitic granitoids by partial melting of thickened lower crust and its implications for early crustal growth:A case study from the Huichizi pluton,Qinling orogen,Central China[J].Lithos,238:1-12.
    Qin K Z,Zhai M G,Li G M,Zhao J X,Zeng Q D,Gao J,Xiao W J,Li J L and Sun S.2017.Links of Collage orogenesis of multiblocks and crust evolution to characteristic metallogeneses in China[J].Acta Petrologica Sinica,33(2):305-325(in Chinese with English abstract).
    Ren B Q,Zhang H,Tang Y and LüZ H.2011.LA-ICPMS U-Pb zircon geochronology of the Altay pegmatites and its geological significance[J].Acta Mineralogica Sinica,31(3):587-596(in Chinese with English abstract).
    Thomas R and Veksler I.2002.Formation of granite pegmatites in the light of melt and fluid inclusion studies and new and old experimental work[M].In:Slaby E,Ilnicki S and Kozlowski A,ed.Mineralogical Society of Poland,Special Papers,Vol.20,50th Anniversary of Faculty of Geology of the Warsaw University,Mineralogical Sciences,44-49.
    Thomas R and Davidson P.2012.Water in granite and pegmatite-forming melts[J].Ore Geology Reviews,46:32-46.
    Thoams R and Davidson P.2016.Revisiting complete miscibility between silicate melts and hydrous fluids,and the extreme enrichment of some elements in the supercritical state-Consequences for the formation of pegmatites and ore deposits[J].Ore Geology Reviews,72:1088-1101.
    Tong Y,Hong D W,Wang T,Wang S G and Han B F.2006a.TIMS U-Pb zircon ages of Fuyun post-orogenic linear granite plutons on the southern margin of Altay orogenic belt and their implications[J].Acta Petrologica et Mineralogica 29(6):619-641(in Chinese with English abstract).
    Tong Y,Wang T,Kovach V P,Hong D W and Han B F.2006b.Age and origin of Takeshiken postorogenic alkali-rich intrusive rocks in southern Altay,near the Mongolian border in China and its implicaitons for continental growth[J].Acta Petrologica et Mineralogica,22(5):1267-1278(in Chinese with English abstract).
    Wang C L,Qin K Z,Tang D M,Zhou Q F,Shen M D,Guo Z L and Guo X J.2015.Geochronology and Hf isotope of zircon for the Arskartor Be-Nb-Mo deposit in Altay and its geological implications[J].Acta Petrologica Sinica,31(8):2337-2352(in Chinese with English abstract).
    Wang C L.2017.Li-Be-Nb-Ta mineralization in the Kelumute-Jideke ore deposit cluster,Chinese Altay(dissertation for doctor degree)[D].Supervisor:Qin K Z.Urumqi:University of Chinese Academy of Sciences.1-238(in Chinese with English abstract).
    Wang D H,Chen Y C and Xu Z G.2003.40Ar/39Ar isotope dating on muscovite from Indosinian rare metal deposits in Central Altay,Northwestern China[J].Bulletin of Mineralogy,Petrology and Geochemistry,22(1):14-17(in Chinese with English abstract).
    Wang D H,Chen Y C,Zou T R,Xu Z G,Li H Q,Chen W,Chen F Wand Tian F.2000.40Ar/39Ar dating for the Azubai rare metal-gem deposit in Altay,Xinjiang:New evidence for Yanshanian mineralization of rare metals[J].Geological Review,46(3):307-311(in Chinese with English abstract).
    Wang D H.2019.Study on critical mineral resources,significance of research,determination of types,attributes of resources,progress of prospecting,problems of utilization,and direction of exploration[J].Acta Geologica Sinica,93(5):1189-1209(in Chinese with English abstract).
    Wang H,Li P,Ma H D,Zhu B Y,Qiu L,Zhang X Y,Dong R,Zhou KL,Wang M,Wang Q,Ya Q H,Wei X P,He B,Lu H and Gao H.2017.Discovery of the Bailongshan superlarge lithium-rubidium deposit in Karakorum,Hetian,Xinjiang,and its prospecting implication[J].Geotectonica et Metallogenia,41(6):1053-1062(in Chinese with English abstract).
    Wang R C,Wu F Y,Xie L,Liu X C,Wang J M,Yang L,Lai W and Liu C.2017.A preliminary study of rare-metal mineralization in the Himalaya leucogranite belts,South Tibet[J].Science China Earth Sciences,doi:10.1007/s11430-017-9075-8.
    Wang T.,Hong D W,Jahn B M,Tong Y,Wang Y B,Han B F and Wang X X.2006.Timing,petrogenesis,and setting of Paleozoic synorogenic intrusions from the Altay Mountains,Northwest China:Implications for the tectonic evolution of an accretionary orogen[J].The Journal of Geology,114(6):735-751.
    Wang T,Tong Y,Jahn B M,Zou T R,Wang Y B,Hong D W and Han B F.2007.SHRIMP U-Pb zircon geochronology of the Altay No.3 pegmatite,NW China,and its implications for the origin and tectonic setting of the pegmatite[J].Ore Geology Reviews,32(1-2):325-336.
    Windley B F,Kr?ner A,Guo J H,Qu G S,Li Y Y and Zhang C.2002.Neoproterozoic to Paleozoic geology of the Altay Orogen,NWChina:New zircon age data and tectonic evolution[J].The Journal of Geology,110(6):719-737.
    Zhai M G,Wu F Y,Hu R Z,Jiang S Y,Li W C,Wang R C,Wang D H,Qi T,Qin K Z and Wen H J.2019.Critical metal mineral resources:Current research status and scientific issues[J].Bulletin of National Natural Science Foundation of China,33(2):106-111(in Chinese with English abstract).
    Zhang C L,Liu L,Wang T,Wang X X,Li L,Gong Q F and Li X F.2013.Granitic magmatism related to early Paleozoic continental collision in the North Qinling belt[J].Chinese Science Bulletin,58(23):2323-2329(in Chinese with English abstract).
    Zhang H,LüZ H and Tang Y.2019.Metallogeny and prospecting model as well as prospecting direction of pegmatite-type rare metal ore deposits in Altay orogenic belt,Xinjiang[J].Mineral Deposits,38(4):792-814(in Chinese with English abstract).
    Zhou Q F,Qin K Z,Tang D M,Wang C L,Tian Y and Sakyi P A.2015a.Mineralogy of the Kotokay No.3 pegmatite,Altay,NW China:Implications for evolution and melt-fluid processes of rare-metal pegmatites[J].European Journal of Mineralogy,27:433-457.
    Zhou Q F,Qin K Z,Tang D M,Tian Y,Cao M J and Wang C L.2015b.Formation age and evolutioin time span of the Koktokay No.3pegmatite,Altay,NW China:Evidence from U-Pb zircon and 40Ar-39Ar muscovite ages[J].Resource Geology,65(3):210-231.
    Zhou Q F,Qin K Z,Tang D M,Wang C L and Sakyi P A.2018.LA-ICP-MS U-Pb zircon,columbite-tantalite and 40Ar-39Ar muscovite age constraints for the rare-element pegmatite dykes in the Altay orogenic belt,NW China[J].Geological Magazine,155(3):707-728.
    Zhou Q F,Qin K Z,Tang D M,Wang C L and Ma L S.2019.Mineralogical characteristics and significance of beryl from the rare-element pegmatites in the Lushi County,East Qinling,China[J].Acta Petrologica Sinica,35(7):1999-2012(in Chinese with English abstract).
    Zou T R and Xu J G.1975.On the origin and classification of granite pegamtites[J].Geochimica,3:161-174(in Chinese with English abstract)
    Zou T R,Yang Y Q,Guo Y Q and Ni Y X.1985.China’s crust-and mantle-source pegmatites and their discriminating criteria[J].Geochemistry,4(1):1-17.
    Zou T R,Zhang X C,Jia F Y,Wang R C,Cao H Z and Wu B Q.1986.The origin of No.3 pegmatite in Altayshan,Xinjiang[J].Mineral Deposits,5(4):34-48(in Chinese with English abstract).
    Zou T R and Li Q C.2006.Rare and rare earth metallic deposits in Xinjiang,China[M].Beijing:Geological Publishing House.1-294(in Chinese).
    李建康,邹天人,王登红,丁欣.2017.中国铍矿成矿规律[J].矿床地质,36(4):951-978.
    李建康,李鹏,王登红,李兴杰.2019.中国铌钽成矿规律[J].科学通报,15:1545-1566.
    卢欣祥,祝朝辉,古德敏,张画眠,吴梅,吴艳.2010.东秦岭花岗伟晶岩的基本地质矿化特征[J].地质论评,56(1):21-30.
    栾世伟.1979.秦东稀有元素花岗伟晶岩某些地球化学特征[J].地球化学,4:322-330.
    栾世伟.1985.东秦岭东段稀有元素花岗岩矿物学、地球化学及矿床学[A].全国伟晶岩学术交流会论文摘要汇编[C].1-3.
    马占龙,张辉,唐勇,吕正航,张鑫,赵景宇.2015.新疆卡鲁安矿区伟晶岩锆石U-Pb定年、铪同位素组成及其与哈龙花岗岩成因关系研究[J].地球化学,44(1):9-26.
    秦克章.2000.新疆北部中亚型造山与成矿作用[R].中国科学院地质与地球物理研究所博士后研究报告.1-195.
    秦克章,申茂德,唐冬梅,郭正林,周起凤,王春龙,郭旭吉,田野,丁建刚.2013.阿尔泰造山带伟晶岩型稀有金属矿化类型与成岩成矿时代[J].新疆地质,31(增刊):1-7.
    秦克章,翟明国,李光明,赵俊兴,曾庆栋,高俊,肖文交,李继亮,孙枢.2017.中国陆壳演化、多块体拼合造山与特色成矿的关系[J].岩石学报,33(2):305-325.
    任宝琴,张辉,唐勇,吕正航.2011.阿尔泰造山带伟晶岩年代学及其地质意义[J].矿物学报,31(3):587-596.
    童英,洪大卫,王涛,王式洸,韩宝福.2006a.阿尔泰造山带南缘富蕴后造山线性花岗岩体锆石U-Pb年龄及其地质意义[J].岩石矿物学杂志,25(2):85-89.
    童英,王涛,Kovach V P,洪大卫,韩宝福.2006b.阿尔泰中蒙边界塔克什肯口岸后造山富碱侵入岩体的形成时代、成因及其地壳生长意义[J].岩石学报,22(5):1267-1278.
    王春龙,秦克章,唐冬梅,周起凤,申茂德,郭正林,郭旭吉.2015.阿尔泰阿斯喀尔特Be-Nb-Mo矿床年代学、锆石Hf同位素研究及其意义[J].岩石学报,31(8):2337-2352.
    王春龙.2017.阿尔泰柯鲁木特-吉得克矿集区Li-Be-Nb-Ta成矿作用(博士论文)[D].导师:秦克章.乌鲁木齐:中国科学院大学.1-238.
    王登红,陈毓川,邹天人,徐志刚,李华芹,陈文,陈富文,田锋.2000.新疆阿尔泰阿祖拜稀有金属-宝石矿床的成矿时代--燕山期稀有金属成矿的新证据[J].地质论评,46(3):307-311.
    王登红,陈毓川,徐志刚.2003.新疆阿尔泰印支期伟晶岩的成矿年代学研究[J].矿物岩石地球化学通报,22(1):14-17.
    王登红.2019.关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J].地质学报,93(6):1189-1209.
    王核,李沛,马华东,朱炳玉,邱林,张晓宇,董瑞,周楷麟,王敏,王茜,闫庆贺,魏小鹏,何斌,卢鸿,高昊.2017.新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义[J].大地构造与成矿学,6:1053-1062.
    王汝成,吴福元,谢磊,刘小驰,王佳敏,杨雷,赖文,刘晨.2017.藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究[J].中国科学(地球科学),8:871-880.
    翟明国,吴福元,胡瑞忠,蒋少涌,李文昌,王汝成,王登红,齐涛,秦克章,温汉捷.2019.战略性关键金属矿产资源:现状与问题[J].中国科学基金,33(2):106-111.
    张成立,刘良,王涛,王晓霞,李雷,龚齐福,李小菲.2013.北秦岭早古生代大陆碰撞过程中的花岗岩浆作用[J].科学通报,58(23):2323-2329.
    张辉,吕正航,唐勇.2019.新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向[J].矿床地质,38(4):792-814.
    周起凤,秦克章,唐冬梅,王春龙,马留锁.2019.东秦岭卢氏稀有金属伟晶岩的绿柱石矿物学特征及其指示意义[J].岩石学报,35(7):1999-2012.
    邹天人,徐建国.1975.论花岗伟晶岩的成因和类型的划分[J].地球化学,(3):3161-3174.
    邹天人,张相寰,贾富义,王汝聪,曹惠志,吴柏青.1986.论阿尔泰3号脉伟晶岩的成因[J].矿床地质,5(4):34-48.
    邹天人,李庆昌.2006.中国新疆稀有即稀土金属矿床[M].北京:地质出版社.1-284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700