用户名: 密码: 验证码:
Genesis of the Bianjiadayuan Pb-Zn polymetallic deposit, Inner Mongolia, China:Constraints from in-situ sulfur isotope and trace element geochemistry of pyrite
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Genesis of the Bianjiadayuan Pb-Zn polymetallic deposit, Inner Mongolia, China:Constraints from in-situ sulfur isotope and trace element geochemistry of pyrite
  • 作者:Kai-Rui ; Song ; Li ; Tang ; Shou-Ting ; Zhang ; M.Santosh ; Christopher ; J.Spencer ; Yu ; Zhao ; Hao-Xing ; Li ; Liang ; Wang ; An-Li ; Zhang ; Yin-Qiang ; Sun
  • 英文作者:Kai-Rui Song;Li Tang;Shou-Ting Zhang;M.Santosh;Christopher J.Spencer;Yu Zhao;Hao-Xing Li;Liang Wang;An-Li Zhang;Yin-Qiang Sun;School of the Earth Sciences and Resources, China University of Geosciences (Beijing);Centre for Tectonics, Exploration and Research, University of Adelaide;School of Earth and Planetary Sciences, The Institute of Geoscience Research, Curtin University;Lituo Mining Company;243 Team, China Nuclear Geology;
  • 英文关键词:Trace elements;;In-situ sulfur isotope;;Pyrite;;Bianjiadayuan deposit;;Southern Great Xing'an range
  • 中文刊名:Geoscience Frontiers
  • 英文刊名:地学前缘(英文版)
  • 机构:School of the Earth Sciences and Resources, China University of Geosciences (Beijing);Centre for Tectonics, Exploration and Research, University of Adelaide;School of Earth and Planetary Sciences, The Institute of Geoscience Research, Curtin University;Lituo Mining Company;243 Team, China Nuclear Geology;
  • 出版日期:2019-09-15
  • 出版单位:Geoscience Frontiers
  • 年:2019
  • 期:05
  • 基金:financially supported by National Key Research and Development Program of China (2016YFC0600504);; Fundamental Research Funds for the Central Universities (2652017218)
  • 语种:英文;
  • 页:222-236
  • 页数:15
  • CN:11-5920/P
  • ISSN:1674-9871
  • 分类号:P618.2
摘要
The Southern Great Xing'an Range(S(GXR)which forms part of the eastern segment of the Central Asian Orogenic Belt(CAOB)is known as one of the most important Cu-Mo-Pb-Zn-Ag-Au metallogenic belts in China,hosting a number of porphyry Mo(Cu),skarn Fe(Sn),epithermal Au-Ag,and hydrothermal veintype Ag-Pb-Zn ore deposits.Here we investigate the Bianjiadayuan hydrothermal vein-type Ag-Pb-Zn ore deposit in the southern part of the SGXR.Porphyry Sn± Cu± Mo mineralization is also developed to the west of the Ag-Pb-Zn veins in the ore field.We identify a five-stage mineralization process based on field and petrologic studies including(i)the early porphyry mineralization stage,(ii)main porphyry mineralization stage,(iii)transition mineralization stage,(iv)vein-type mineralization stage and(v)late mineralization stage.Pyrite is the predominant sulfide mineral in all stages except in the late mineralization stage,and we identify corresponding four types of pyrites:Pyl is medium-grained subhedral to euhedral occurring in the early barren quartz vein;Py2 is medium-to fine-grained euhedral pyrite mainly coexisting with molybdenite,chalcopyrite,minor sphalerite and galena;Py3 is fine-grained,subhedral to irregular pyrite and displays cataclastic textures with micro-fractures;Py4 occurs as euhedral microcrystals and forms irregularly shaped aggregate with sphalerite and galena.LA-ICP-MS trace element analyses of pyrite show that Cu,Pb,Zn,Ag,Sn,Cd and Sb are partitioned into pyrite as structurally bound metals or mineral micro/nano-inclusions,whereas Co,Ni,As and Se enter the lattice via isomorphism in all types of pyrite.The Cu,Zn,Ag,Cd concentrations gradually increase from Pyl to Py4,which we correlate with cooling and mixing of ore-forming fluid with meteoric water.Py2 contains the highest contents of Co,Ni,Se,Te and Bi,suggesting high temperature conditions for the porphyry mineralization stage.Ratios of Co/Ni(0.03-10.79,average 2.13)and sulphur isotope composition of sulfide indicate typical hydrothermal origin for pyrites.The δ~(34)S_(cDT) values of Pyl(0.42‰-1.61‰,average1.16‰),Py2(-1.23‰to 0.82‰,average 0.35‰),Py3(—0.36‰to 2.47‰average 0.97‰).Py4(2.51‰--3.72‰,average 3.06‰),and other sulfides are consistent with those of typical porphyry deposit(-5‰to 5‰),indicating that the Pb-Zn polymetallic mineralization in the Bianjiadayuan deposit is genetically linked to the Yanshanian(Jurassic-Cretaceous)magmatic-hydrothermal events.Variations of δ~(34) S values are ascribed to the changes in physical and chemical conditions during the evolution and migration of the ore-forming fluid.We propose that the high Sn content of pyrite in the Bianjiadayuan hydrothermal vein-type Pb-Zn polymetallic deposit can be used as a possible pathfinder to prospect for Sn mineralization in the surrounding area or deeper level of the ore field in this region.
        The Southern Great Xing'an Range(S(GXR)which forms part of the eastern segment of the Central Asian Orogenic Belt(CAOB)is known as one of the most important Cu-Mo-Pb-Zn-Ag-Au metallogenic belts in China,hosting a number of porphyry Mo(Cu),skarn Fe(Sn),epithermal Au-Ag,and hydrothermal veintype Ag-Pb-Zn ore deposits.Here we investigate the Bianjiadayuan hydrothermal vein-type Ag-Pb-Zn ore deposit in the southern part of the SGXR.Porphyry Sn± Cu± Mo mineralization is also developed to the west of the Ag-Pb-Zn veins in the ore field.We identify a five-stage mineralization process based on field and petrologic studies including(i)the early porphyry mineralization stage,(ii)main porphyry mineralization stage,(iii)transition mineralization stage,(iv)vein-type mineralization stage and(v)late mineralization stage.Pyrite is the predominant sulfide mineral in all stages except in the late mineralization stage,and we identify corresponding four types of pyrites:Pyl is medium-grained subhedral to euhedral occurring in the early barren quartz vein;Py2 is medium-to fine-grained euhedral pyrite mainly coexisting with molybdenite,chalcopyrite,minor sphalerite and galena;Py3 is fine-grained,subhedral to irregular pyrite and displays cataclastic textures with micro-fractures;Py4 occurs as euhedral microcrystals and forms irregularly shaped aggregate with sphalerite and galena.LA-ICP-MS trace element analyses of pyrite show that Cu,Pb,Zn,Ag,Sn,Cd and Sb are partitioned into pyrite as structurally bound metals or mineral micro/nano-inclusions,whereas Co,Ni,As and Se enter the lattice via isomorphism in all types of pyrite.The Cu,Zn,Ag,Cd concentrations gradually increase from Pyl to Py4,which we correlate with cooling and mixing of ore-forming fluid with meteoric water.Py2 contains the highest contents of Co,Ni,Se,Te and Bi,suggesting high temperature conditions for the porphyry mineralization stage.Ratios of Co/Ni(0.03-10.79,average 2.13)and sulphur isotope composition of sulfide indicate typical hydrothermal origin for pyrites.The δ~(34)S_(cDT) values of Pyl(0.42‰-1.61‰,average1.16‰),Py2(-1.23‰to 0.82‰,average 0.35‰),Py3(—0.36‰to 2.47‰average 0.97‰).Py4(2.51‰--3.72‰,average 3.06‰),and other sulfides are consistent with those of typical porphyry deposit(-5‰to 5‰),indicating that the Pb-Zn polymetallic mineralization in the Bianjiadayuan deposit is genetically linked to the Yanshanian(Jurassic-Cretaceous)magmatic-hydrothermal events.Variations of δ~(34) S values are ascribed to the changes in physical and chemical conditions during the evolution and migration of the ore-forming fluid.We propose that the high Sn content of pyrite in the Bianjiadayuan hydrothermal vein-type Pb-Zn polymetallic deposit can be used as a possible pathfinder to prospect for Sn mineralization in the surrounding area or deeper level of the ore field in this region.
引文
Agangi,A.,Hofmann,A.,Przybylowicz,W.,2014.Trace element zoning of sulfides and quartz at Sheba and Fairview gold mines:clues to Mesoarchean mineralization in the Barberton Greenstone belt.South Africa.Ore Geology Reviews 56,94-114.
    Bajwah,Z.U.,Seccombe,P.K.,Offler,R.,1987.Trace element distribution,Co:Ni ratios and genesis of the Big Cadia iron-copper deposit,New South Wales,Australia.Mineralium Deposita 22,292-300.
    Basril,M.B.I.,Gilbert,S.,Large,R.R.,Zaw,K.,2018.Textures and trace element composition of pyrite from the Bukit Botol volcanic-hosted massive sulphide deposit,Peninsular Malaysia.Journal of Asian Earth Sciences 158.,173-185.
    Belousov,I.,Large,R.R.,Meffre,S.,Danyushevsky,L.V.,Steadman,J.,Beardsmore,T.,2016.Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton,Western Australia:implications for gold and copper exploration.Ore Geology Reviews 79,474-499.
    Bralia,A.,Sabatini,G.,Troja,F.,1979.A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems.Mineralium Deposita 14,353-374.
    Cai,K.D.,Long,X.P.,Chen,H.Y.,Sun,M.,Xiao,W.J.,2018.Accretionary and collisional orogenesis in the south domain of the western Central Asian Orogenic Belt(CAOB).Journal of Asian Earth Sciences 153.,1-8.
    Calagari,A.A.,2003.Stable isotope(S,O,H and C)studies of the phyllic and potassic—phyllic alteration zones of the porphyry copper deposit at sungun,east Azarbaidjan,Iran.Journal of Asian Earth Sciences 21,767-780.
    Cao,H.W.,Zhang,S.T.,Santosh,M.,Zheng,L., Tang,L,Li,D.,Zhang,X.H.,Zhang,Y.H.,2015.The Luanchuan Mo-W-Pb-Zn-Ag magmatic-hydrothermal system in the East Qinling metallogenic belt,China:constrains on metallogenesis from C-HO-S-Pb isotope compositions and Rb-Sr isochron ages.Journal of Asian Earth Sciences 111,751-780.
    Catchpole,H.,Kouzmanov,K.,Bendezu,A.,Ovtcharova,M.,Spikings,R.,Stein,H.,Fontbote,L,2015a.Timing of porphyry(Cu-Mo)and base metal(Zn-Pb-Ag-Cu)mineralisation in a magmatic-hydrothermal system—Morococha district,Peru.Mineralium Deposita 50,895-922.
    Catchpole,H.,Kouzmanov,K.,Putlitz,B.,Hun Seo,J.,Fontbote,L.,2015b.Zoned base metal mineralization in a porphyry system:origin and evolution of mineralizing fluids in the Morococha district,Peru.Economic Geology 110,39-71.
    Chen,Y.J.,Zhang,C.,Wang,P.,Pirajno,F.,Li,N.,2016.The Mo deposits of northeast China:a powerful indicator of tectonic settings and associated evolutionary trends.Ore Geology Reviews 81,602-640.
    Chen,F.C.,Deng,J.,Wang,Q.F.,Li,G.J.,Shu,Q.H.,Yang,C.H.,Liu,J.Y.,Xu,R.,2018.The source and evolution of ore fluids in the Heiniuwa gold deposit,Baoshan block,Sanjiang region:constraints from sulfide trace element,fluid inclusion and stable isotope studies.Ore Geology Reviews 95,725-745.
    Cioaca,M.E.,Munteanu,M.,Qi,L,Costin,G.,2014.Trace element concentrations in porphyry copper deposits from Metaliferi Mountains,Romania:a reconnaissance study.Ore Geology Reviews 63,22-39.
    Ciobanu,C.,Cook,N.,Utsunomiya,S.,Kogagwa,M.,Green,L.,Gilbert,S.,Wade,B.,2012.Gold-telluride nanoparticles revealed in arsenic-free pyrite.American Mineralogist 97.,1515-1518.
    Clark,C.,Grguric,B.,Mumm,A.S.,2004.Genetic implications of pyrite chemistry from the Palaeoproterozoic olary domain and overlying Neoproterozoic Adelaidean sequences,northeastern south Australia.Ore Geology Reviews 25,237—257.
    Cook,N.J.,Chryssoulis,S.L,1990.Concentrations of invisible gold in the common sulfides.The Canadian Mineralogist 28.,1-16.
    Deditius,A.P.,Utsunomiya,S.,Reich,M.,Kesler,S.E.,Ewing,R.C.,Hough,R.,Walshe,J.,2011.Trace metal nanoparticles in pyrite.Ore Geology Reviews 42,32-46.
    Deditius,A.P.,Reich,M.,Kesler,S.E.,Utsunomiya,S.,Chryssoulis,S.L.,Walshe,J.,Ewing,R.C,2014.The coupled geochemistry of Au and as in pyrite from hydrothermal ore deposits.Geochimica et Cosmochimica Acta 140,644-670.
    Dehnavi,A.S.,Mcfarlane,C.R.M.,Lentz,D.R.,Walker,J.A.,2018.Assessment of pyrite composition by LA-ICP-MS techniques from massive sulfide deposits of the Bathurst mining camp,Canada:from textural and chemical evolution to its application as a vectoring tool for the exploration of VMS deposits.Ore Geology Reviews 92,656—671.
    Du,LJ.,Li,B.,Huang,Z.L,Zhou,J.X.,Zou,G.F.,Yan,Z.F.,2017.Carbon-oxygen isotopic geochemistry of the yangla cu skarn deposit,SW China:implications for the source and evolution of hydrothermal fluids.Ore Geology Reviews 88,809-821.
    Feng,K.,Fan,H.R.,Hu,F.F.,Yang,K.F.,Liu,X.,Shangguan,Y.N.,Cai,Y.C.,Jiang,P.,2017.Involvement of anomalously As-Au-rich fluids in the mineralization of the Heilan'gou gold deposit,Jiaodong,China:evidence from trace element mapping and in-situ sulfur isotope composition.Journal of Asian Earth Sciences 160,304-321.
    Fielding,I.O.H.,Johnson,S.P.,Meffre,S.,Zi,J.W.,Sheppard,S.,Large,R.R.,Rasmussen,B.,2019.Linking gold mineralization to regional-scale drivers of mineral systems using in situ U-Pb geochronology and pyrite LA-ICP-MS.Geoscience Frontiers 10(1).89-105.https://doi.org/10.1016/j.gsf.2018.06.005.
    Franchini,M.,McFarlane,C.,Maydagan,L,Reich,M.,Lentz,D.R.,Meinert,L,Bouhier,V.,2015.Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit,Catamarca,Argentina:textural features and metal zoning at the porphyry to epithermal transition.Ore Geology Reviews 66,366-387.
    Gu,Y.C.,Chen,R.Y.,Jia,B.,Song,W.B.,Yu,C.T.,Ju,N., 2017.Zircon U-Pb dating and geochemistry of the syenogranite from the Bianjiadayuan Pb-Zn-Ag deposit of Inner Mongolia and its tectonic implications.Geology in China 44.,101-117(in Chinese with English abstract).
    Hemley,J.J.,1992.Hydrothermal ore-forming processes in the light of studies in rock-buffered systems:I.Fe-Cu-Zn-Pb sulfide solubility relations.Economic Geology 87.,1-22.
    Hoefs,J.,2004.Variations of Stable Isotope Ratios in Nature.In:Stable Isotope Geochemistry.Springer,Berlin Heidelberg,pp.93-227.
    Hoefs,J.,2015.Variations of Stable Isotope Ratios in Nature.In:Stable Isotope Geochemistry.Springer,Cham,pp.191-383.
    Hulston,J.R.,Thode,H.G.,1965.Variations in the 33S,34S,and 36S contents of meteorites and their relation to chemical and nuclear effects.Journal of Geophysical Research 70,3475-3484.
    Ingham,E.S.,Cook,N.J.,Cliff,J.,Ciobanu,C.,Huddleston,A.L,2014.A combined chemical,isotopic and microstructural study of pyrite from roll-front uranium deposits,Lake Eyre Basin,South Australia.Geochimica et Cosmochimica Acta125.440-465.
    Ishiyama,D.,Sato,R.,Mizuta,T.,Ishikawa,Y.,Wang,J.B.,2001.Characteristic features of tin—iron-copper mineralization in the Anle-Huanggangliang mining area,Inner Mongolia,China.Resource Geology 51(4),377-392.
    Jin,L.Y.,Qin,K.Z.,Li,G.M.,Li,Z.Z.,Song,G.Y.,Meng,Z.J.,2015.Trace element distribution in sulfides from the Chalukou porphyry Mo-vein-type Zn-Pb system,northern Great Xing'an Range,China:implications for metal source and ore exploration.Acta Petrologica Sinica 31,2417-2434(in Chinese with English abstract).
    Keith,M.,Haase,K.M.,Klemd,R.,Krumm,S.,Strauss,H.,2016.Systematic variations of trace element and sulfur isotope compositions in pyrite with stratigraphic depth in the Skouriotissa volcanic-hosted massive sulfide deposit,Troodos ophiolite,Cyprus.Chemical Geology 423,7-18.
    Klemd,R.,Gao,J.,Li,J.L,Meyer,M.,2015.Metamorphic evolution of(ultra)-highpressure subduction-related transient crust in the south Tianshan orogen(central Asian orogenic belt):geodynamic implications.Gondwana Research 28(1).,1-25.
    Koglin,N.,Frimmel,H.E.,Lawrie Minter,W.E.,Bratz,H.,2010.Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits.Mineralium Deposits 45(3),259-280.
    Kostova,B.,Pettke,T.,Driesner,T.,Petrov,PA.,Heinrich,C,2004.LA ICP-MS study of fluid inclusions in quartz from the Yuzhna Petrovitsa deposit,Madan ore field,
    Bulgaria.Schweizerische Mineralogische und Petrographische Mitteilungen 84(1),25-36.
    Kouhestani,H.,Ghaderi,M.,Large,R.R.,Zaw,K.,2017.Texture and chemistry of pyrite at Chah Zard epithermal gold-silver deposit,Iran.Ore Geology Reviews84.80-101.
    Kroner,A.,Kovach,V.,Belousova,E.,Hegner,E.,Armstrong,R.,Dolgopolova,A.,Seltmann,R., Alexeiev,D.V.,Hoffmann,J.E.,Wong,J.,Sun,M.,Cai,K.,Wang,T.,Tong,Y.,Wilde,S.A.,Degtyarev,K.E.,Rytsk,E.,2014.Reassessment of continental growth during the accretionary history of the central Asian orogenic belt.Gondwana Research 25(1),103-125.
    LaFIamme,C.,Martin,L,Jeon,H.,Reddy,S.M.,Selvaraja,V.,Caruso,S.,Bui,T.H.,Roberts,M.P.,Voute,F.,Hagemann,S.,Wacey,D.,Littman,S.,Wing,B.,Fiorentini,M.,Kilburn,M.R.,2016.In situ multiple sulfur isotope analysis by SIMS of pyrite,chalcopyrite,pyrrhotite,and pentlandite to refine magmatic ore genetic models.Chemical Geology 444.,1-15.
    Large,R.,Danyushevsky,L,Hollit,C.,Maslennikov,V.,Meffre,S.,Gilbert,S.,Bull,S.,Scott,R.,Emsbo,P.,Thomas,H.,Singh,B.,Foster,J.,2009.Gold and trace element Zonation in pyrite using a laser imaging technique:implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits.Economic Geology 104,635-668.
    Lawley,C.,Richards,J.,Anderson,R.G.,Creaser,R.A.,Heaman,L,2010.Geochronology and geochemistry of the MAX porphyry Mo deposit and its relationship to Pb-Zn-Ag mineralization,Kootenay arc,Southeastern British Columbia,Canada.Economic Geology 105.,1113-1142.
    Li,N.,Deng,J.,Yang,LQ.,Goldfarb,R.J.,Zhang,C.,Marsh,E.,Lei,S.B.,Koenig,A.,lowers,H.,2014.Paragenesis and geochemistry of ore minerals in the epizonal gold deposits of the Yangshan gold belt,West Qinling,China.Mineralium Deposits 49(4),427-449.
    Li,P.F.,Sun,M.,Rosenbaum,G.,Yuan,C.,Safonova,l.,Cai,K.D.,Jiang,Y.D.,Zhang,Y.Y.,2018.Geometry,kinematics and tectonic models of the Kazakhstan Orocline,central Asian orogenic belt.Journal of Asian Earth Sciences 153,42-56.
    Li,R.C.,Chen,H.Y.,Xia,X.P.,Yang,Q.,Li,L,Xu.J.,Huang,C.,Danyushevsky,L.V.,2017a.Ore fluid evolution in the giant Marcona Fe-(Cu)deposit,Peru:evidence from in-situ sulfur isotope and trace element geochemistry of sulfides.Ore Geology Reviews 86,624-638.
    Li,Z.K.,Bi,S.J.,Li,J.W.,Zhang,W.,Cooke,D.R.,Selby,D.,2017b.Distal Pb-Zn-Ag veins associated with the world-class Donggou porphyry Mo deposit,southern North China Craton.Ore Geology Reviews 82,232-251.
    Lin,Z.Y.,Sun,X.M.,Peckmann,J.,Lu,Y.,Xu,L.,Strauss,H.,Zhou,H.Y.,Gong,J.L.,Lu,H.F.,Teichert.B.M.A.,2016.How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite:a SIMS study from the south China sea.Chemical Geology 440,26-41.
    Liu,Y.,Jiang,S.H.,Bagas,L., Han,N.,Chen,C.L,Kang,H.,2017.Isotopic(C-O-S)geochemistry and Re-Os geochronology of the Haobugao Zn-Fe deposit in Inner Mongolia,NE China.Ore Geology Reviews 82,130-147.
    Liu,L.J.,Zhou,T.F.,Zhang,D.Y.,Yuan,F.,Liu,G.X.,Zhao,Z.C.,Sun,J.,White,N.,2018.S isotopic geochemistry,zircon and cassiterite U-Pb geochronology of the Haobugao Sn polymetallic deposit,southern Great Xing'an Range,NE China.Ore Geology Reviews 93,168-180.
    Mao,J.W.,Pirajno,F.,Xiang,J.F.,Gao,J.J.,Ye,H.S.,Li,Y.F.,Guo,B.J.,2011.Mesozoic molybdenum deposits in the east Qinling-Dabie orogenic belt:characteristics and tectonic settings.Ore Geology Reviews 43(1),264-293.
    Maslennikov,V.V.,Maslennikova,S.P.,Large,R.R.,Danyushevsky,LV.,2009.Study of trace element Zonation in vent Chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit(southern Urals,Russia)using laser ablation-inductively coupled plasma mass spectrometry(LA-ICPMS).Economic Geology 104,1111-1141.
    Maslennikov,V.V.,Maslennikova,S.P.,Large,R.R.,Danyushevsky,L.V.,Herrington,R.J.,Ayupova,N.R.,Zaykov,V.V.,Lein,A.Y.,Tseluyko,A.S.,Melekestseva,I.Y.,Tessalina,S.G.,2017.Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits:mineral and trace element comparison with modern black,grey,white and clear smokers.Ore Geology Reviews 85,64-106.
    Maydagan,L,Franchini,M.,Lentz,D., Pons,J.,McFarlane,C.,2013.Sulfide composition and isotopic signature of the Altar Cu-Au deposit,Argentina:constraints on the evolution of the porphyry-epithermal system.The Canadian Mineralogist 51(6),813-840.
    Mei,W.,Lv,X.B.,Cao,X.F.,Liu,Z.,Zhao,Y.,Ai,Z.Z.,Tang,R.K.,Abfaua,M.M.,2015.Ore genesis and hydrothermal evolution of the Huanggang skarn iron-tin polymetallic deposit,southern Great Xing'an Range:evidence from fluid inclusions and isotope analyses.Ore Geology Reviews 64(Suppl.C),239-252.
    Mills,S.E.,Tomkins,A.G.,Weinberg,R.F.,Fan,H.R.,2015.Implications of pyrite geochemistry for gold mineralization and remobilization in the Jiaodong gold district,northeast China.Ore Geology Reviews 71,150-168.
    Morishita,Y.,Shimada,N.,Shimada,K.,2018.Invisible gold in arsenian pyrite from the high-grade Hishikari gold deposit,Japan:significance of variation and distribution of Au/As ratios in pyrite.Ore Geology Reviews 95,79-93.
    Morse.J.W.,Luther,G.W.,1999.Chemical influences on trace metal-sulfide interactions in anoxic sediments.(Geochimica et Cosmochimica Acta 63(19),3373-3378.
    Mukherjee,l.,Large,R.,2017.Application of pyrite trace element chemistry to exploration for SEDEX style Zn-Pb deposits:McArthur Basin,Northern Territory,Australia.Ore Geology Reviews 81,1249-1270.Part 4.
    Ohmoto,H.,1972.Systematics of sulfur and carbon isotopes in hydrothermal ore deposits.Economic Geology 67(5),551-578.
    Ohmoto,H.,1979.Isotope of sulfur and carbon.Geochemistry of Hydrothermal Ore Deposits 509-567.
    Ohmoto,H.,1986.Stable isotope geochemistry of ore deposits.Reviews in Mineralogy 16,491-560.
    Ouyang,H.G.,Mao,J.W.,Santosh,M.,Wu,Y.,Hou,L,Wang,X.F.,2014.The Early Cretaceous Weilasituo Zn-Cu-Ag vein deposit in the southern Great Xing'an Range,northeast China:fluid inclusions,H,O,S,Pb isotope geochemistry and genetic implications.Ore Geology Reviews 56,503-515.
    Ouyang,H.G.,Mao,J.W.,Zhou,Z.H.,Su,H.M.,2015.Late Mesozoic metallogeny and intracontinental magmatism,southern Great Xing'an Range,northeastern China.Gondwana Research 27(3),1153-1172.
    Palme,H.,Jones,A.,2003.1.03-solar system Abundances of the elements.Treatise on Geochemistry 37(2),41-61.
    Pei,Q.M.,Zhang,S.T.,Santosh,M.,Cao,H.W.,Zhang,W.,Hu,X.K.,Wang,L,2017.Geochronology,geochemistry,fluid inclusion and C,O and Hf isotope compositions of the Shuitou fluorite deposit.Inner Mongolia,China.Ore Geology Reviews 83,174-190.
    Pei,Q.M.,Zhang,S.T.,Hayashi,K.I.,Cao,H.W.,Li,D.,Tang,L.,Hu,X.K.,Li,H.X.,Fang,D.R.,2018.Permo-triassic granitoids of the Xing'an-Mongolia segment of the central Asian orogenic belt,norltheast China:age,composition,and tectonic implications.International Geology Review 60.,1172-1194.
    Price,B.J.,1972.Minor Elements in Pyrites from the Smithers Map Area,B.C.and Exploration Applications of Minor Element Studies Text Thesis.University of British Columbia.
    Qin,G.J.,Kawachi,Y.,Zhao,L.Q.,Wang,Y.Z.,Ou,Q.,2001.The Upper Permian sedimentary Facies and its role in the Dajing Cu-Sn deposit,Linxi county.Inner Mongolia,China.Resource Geology 51,293-305.
    Rajabpour,S.,Behzadi,M.,Jiang,S.Y.,Rasa,I.,Lehmann,B.,Ma,Y.,2017.Sulfide chemistry and sulfur isotope characteristics of the Cenozoic volcanic-hosted Kuh-Pang copper deposit,Saveh county,northwestern central Iran.Ore Geology Reviews 86,563-583.
    Reich,M.,Deditius,A.,Chryssoulis,S.,Li,J.W.,Ma,C.Q.,Parada,MA.,Barra,F.,Mittermayr,F.,2013.Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system:a SLMS/EMPA trace element study.Geochimica et Cosmochimica Acta 104(Suppl.C),42-62.
    Reich,M.,Simon,A.,Deditius,A.,Barra,F.,Chrysoullis,S.,Lagas,G.,Tardani,D.,Knipping,J.,Bilenker,L,Sánchez,P.,Roberts,M.,Minizaga,R., 2016.Trace element signature of pyrite from the los colorados iron oxide-apatite(IOA)Deposit,Chile:a missing link between Andean loa and iron oxide copper-gold systems?Economic Geology 111,743-761.
    Ruan,B.X.,Lv,X.B.,Yang,W.,Liu,S.T.,Yu,Y.M.,Wu,C.M.,Adam.M.M.A.,2015.Geology,geochemistry and fluid inclusions of the Bianjiadayuan Pb-Zn-Ag deposit,Inner Mongolia,NE China:implications for tectonic setting and metallogeny.Ore Geology Reviews 71,121-137.
    Rudnick,R.L,Gao.S.,2003.Composition of the continental crust.Treatise on Geochemistry 3.,1-64.
    Rye,R.,Ohmoto,H.,1974.Sulfur and carbon isotopes and ore genesis:a review.Economic Geology 69(6),826-842.
    Safonova,L,2017.Juvenile versus recycled crust in the Central Asian Orogenic Belt:implications from ocean plate stratigraphy,blueschist belts and intra-oceanic arcs.Gondwana Research 47,6-27.
    Shu,Q.H.,Lai,Y.,Sun,Y.,Wang,C.M.,Meng,S.,2013.Ore genesis and hydrothermal evolution of the Baiyinnuo'er zinc-lead skarn deposit,northeast China:evidence from isotopes(S,Pb)and fluid inclusions.Economic Geology 108,835-860.
    Sillitoe,R.H.,2010.Porphyry copper systems.Economic Geology 105,3-41.Tagirov,B.R.,Seward,T.M.,2010.Hydrosulfide/sulfide complexes of zinc to 250℃and the thermodynamic properties of sphalerite.Chemical Geology 269(3),301-311.
    Tanner,D.,Henley,R.W.,Mavrogenes,J.A.,Holden,P.,2016.Sulfur isotope and trace element systematics of zoned pyrite crystals from the El Indio Au—Cu-Ag deposit,Chile.Contributions to Mineralogy and Petrology 171(4),1—17.
    Thomas,H.,Large,R.,Bull,S.,Maslennikov,V.,Berry,R.,Fraser,R.,Fraud,S.,Moye,R.,2011.Pyrite and pyrrhotite textures and composition in sediments,laminated quartz veins,and Reefs at Bendigo gold mine,Australia:insights for ore genesis.Economic Geology 106,1—31.
    Tribovillard,N.,Algeo,T.J.,Lyons,T.,Riboulleau,A.,2006.Trace metals as paleoredox and paleoproductivity proxies:an update.Chemical Geology 232.,12-32.
    Ulrich,T.,Long,D.,Kamber,B.J.,Whitehouse,M., 2011.In situ trace element and sulfur isotope analysis of pyrite in a Paleoproterozoic gold placer deposit,Pardo and Clement Townships,Ontario,Canada.Economic Geology 106,667-686.
    Wang,C.M.,Yang,LF.,Bagas,L,Evans,N.,Chen,J.Y.,Du,B.,2017a.Mineralization processes at the giant Jinding Zn-Pb deposit,Lanping Basin,Sanjiang Tethys Orogen:evidence from in situ trace element analysis of pyrite and marcasite.Geological Journal,https://doi.org/10.1002/gj.2956.
    Wang,C.N.,Wang,Q.M.,Yu,X.F.,Han,Z.Z.,2016.Metallognetic characteristics of tin and ore-search prospect in the southern part of Da Hinggan mountains.Geology and Prospecting 52,220-227(in Chinese with English abstract).
    Wang,F.X.,Bagas,L.,Jiang,S.H.,Liu,Y.F.,2017b.Geological,geochemical,and geochronological characteristics of Weilasituo Sn-polymetal deposit.Inner Mongolia,China.Ore Geology Reviews 80(Suppl.C),1206-1229.
    Wang,J.B.,Wang,Y.W.,Wang,LJ.,Uemoto,T.,2001.Tin-polymetallic mineralization in the southern part of the Da Hinggan mountains,China.Resource Geology 51,283-291.
    Wang,J.B.,Wang,Y.W.,Wang,LJ.,2005.Tin-polymetallic metallogenic series in the southern part of Da Hinggan mountains,China.Geology and Prospecting 41,15-20(in Chinese with English abstract).
    Wang,X.D.,Xu,D.M.,Lv,X.B.,Wei,W.,Mei,W.,Fan,X.J.,Sun,B.K.,2018.Origin of the Haobugao skarn Fe-Zn polymetallic deposit,Southern Great Xing'an range,NE China:geochronological,geochemical,and Sr-Nd-Pb isotopic constraints.Ore Geology Reviews 94,58-72.
    Wang,X.L,Liu,J.J.,Zhai,D.G.,Yang,Y.Q.,Wang,J.P.,Zhang,Q.B.,Zhang,A.L,Wang,X.L,2013.LA-ICP-MS zircon U-Pb dating,geochemistry of the intrusive rocks from the Bianjiadayuan Pb-Zn-Ag deposit,inner Mongolia,China and tectonic implications.Geotectonica et Metallogenia 37,730-742(in Chinese with English abstract).
    Wang,X.L.,Liu,J.J.,Zhai,D.G.,Wang,J.P.,Zhang,Q.B.,Zhang,A.L,2014a.A study of isotope geochemistry and sources of ore-forming materials of the Bianjiadayuan silver polymetallic deposit in Linxi,Inner Mongolia.Geology in China41,1288-1303(in Chinese with English abstract).
    Wang,X.L,Liu,J.J.,Zhai,D.G.,Yang,Y.Q.,Wang,J.P.,Zhang,Q.,B.,Zhang,A.L,2014b.U-Pb dating,geochemistry and tectonic implications of Bianjiadayuan quartz porphyry.Inner Mongolia,China.Bulletin of Mineralogy,Petrology and Geochemistry 33,654-665(in Chinese with English abstract).
    Wang,X.L,Liu,J.J.,Zhai,D.G.,Yang,Y.Q.,Wang,J.P.,Zhang,Q.B.,Zhang,A.L,Li,Y.L,Wang,X.L,Yang,Z.H.,2014c.Mineral composition of Bianjiadayuan Pb-Zn-Ag polymetallic deposit in inner Mongolia and its origin significance.Journal of China University of Geosciences 28,73-86(in Chinese with English abstract).
    Ward,J.,Mavrogenes,J.,Murray,A.,Holden,P.,2017.Trace element and sulfur isotopic evidence for redox changes during formation of the Wallaby Gold Deposit,Western Australia.Ore Geology Reviews 82,31-48.
    Wohlgemuth-Ueberwasser,C.C,Viljoen,F.,Petersen,S.,Vorster,C.,2015.Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides:an in-situ LA-ICP-MS study.Geochimica et Cosmochimica Acta 159,16-41.
    Wu,F.Y.,Sun,D.Y.,Ge,W.C.,Zhang,Y.B.,Grant,M.L,Wilde,S.A.,Jahn,B.M.,2011.Geochronology of the Phanerozoic granitoids in northeastern China.Journal of Asian Earth Sciences 41(1),1-30.
    Xiao,W.J.,Mao,Q.G.,Windley,B.F.,Han,C.M.,Qu,J.F.,Zhang,J.E.,Ao,S.J.,Guo,Q.Q.,Cleven,N.R.,Lin,S.F.,Shan,Y.H.,Li,J.L.,2010.Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage.American Journal of Science 310(10),1553-1594.
    Xu,B.,Zhao,P.,Wang,Y.Y.,Liao,W.,Luo,Z.W.,Bao,Q.Z.,Zhou,Y.H.,2015.The preDevonian tectonic framework of Xing'an-Mongolia orogenic belt(XMOB)in north China.Journal of Asian Earth Sciences 97,183-196.
    Yuan,M.W.,Li,S.R.,Li,C.L,Santosh,M.,Alam,M.,Zeng,Y.J.,2018.Geochemical and isotopic composition of auriferous pyrite from the Yongxin gold deposit,Central Asian Orogenic Belt:implication for ore genesis.Ore Geology Reviews 93,255-267.
    Zhai,D.G.,Liu,J.J.,Yang,Y.Q.,Wang,J.P.,Ding,L.,Liu,X.W.,Zhang,M.,Yao,M.J.,Su,L,Zhang,H.Y.,2012.Petrogenetic and metallogentic ages and tectonic setting of the Huanggangliang Fe-Sn deposit.Inner Mongolia.Acta Petrologica et Mineralogica 31,513-523(in Chinese with English abstract).
    Zhai,D.G.,Liu,J.J.,Zhang,H.Y.,Yao,M.J.,Wang,J.P.,Yang,Y.Q.,2014.S-Pb isotopic geochemistry,U-Pb and Re-Os geochronology of the Huanggangliang Fe-Sn deposit,Inner Mongolia,NE China.Ore Geology Reviews 59,109-122.
    Zhai,D.G.,Liu,J.J.,Zhang,A.L.,Sun,Y.Q.,2017.U-Pb,Re-Os and~(40)Ar/39Ar geochronology of porphyry Sn±Cu±Mo and polymetallic(Ag-Pb-Zn-Cu)vein mineralization at Bianjiadayuan,inner Mongolia,northeast China:implications for discrete mineralization events.Economic Geology 112,2041-2059.
    Zhai,D.G.,Liu,J.J.,Cook,N.J.,Wang,X.L,Yang,Y.Q.,Zhang,A.L,Jiao,Y.C.,2018a.Mineralogical,textural,sulfur and lead isotope constraints on the origin of AgPb-Zn mineralization at Bianjiadayuan,Inner Mongolia,NE China.Mineralium Deposita 4.,1-20.
    Zhai,D.G.,Liu,J.J.,Zhang,H.Y.,Tombros,S.,Zhang,A.L.,2018b.A magmatic-hydrothermal origin for Ag-Pb-Zn vein formation at the Bianjiadayuan deposit,inner Mongolia,NE China:evidences from fluid inclusion,stable(C-H-O)and noble gas isotope studies.Ore Geology Reviews 101,1-16.
    Zhang,J.,Deng,J.,Chen,H.Y.,Yang,LQ.,Cooke,D.,Danyushevsky,L,Gong,Q.J.,2014a.LA-ICP-MS trace element analysis of pyrite from the Chang'an gold deposit,Sanjiang region,China:implication for ore-forming process.Gondwana Research 26(2),557-575.
    Zhang,lJ、Li,L,Gilbert,S., Liu,J.J.,Shi,W.S.,2014b.LA-ICP-MS and EPMA studies on the Fe-S-As minerals from the Jinlongshan gold deposit,Qinling Orogen,China:implications for ore-forming processes.Geological Journal 49,482-500.
    Zhang,P.,Huang,X.W.,Cui,B.,Wang,B.C.,Yin,Y.F.,Wang,J.R.,2016.Re-Os isotopic and trace element compositions of pyrite and origin of the Cretaceous Jinchang porphyry Cu-Au deposit,Heilongjiang Province,NE China.Journal of Asian Earth Sciences 129,67-80.
    Zhang,X.B.,Wang,K.Y.,Fu,LY.,Zhang,M.,Konare,Y.,Peng,D.W.,Cai,W.Y.,2017.Fluid incdusions,C-H-O-S isotope and geochronology of the Bujinhei Pb-Zn deposit in the southern Great Xing'an range of northeast China:implication for ore genesis.Resource Geology 67(2),207-227.
    Zhang,Y.,Shao,Y.J.,Chen,H.Y.,Liu,Z.F.,Li,D.F.,2016.A hydrothermal origin for the large Xinqiao Cu-S-Fe deposit,Eastern China:evidence from sulfide geochemistry and sulfur isotopes.Ore Geology Reviews 88,534-549.
    Zhao,H.X.,Frimmel,H.E.,Jiang,S.Y.,Dai,B.Z.,2011.LA-ICP-MS trace element analysis of pyrite from the Xiaoqinling gold district,China:implications for ore genesis.Ore Geology Reviews 43(1),142-153.
    Zhou,Y.T.,Lai,Y.,Meng,S., Shu,Q.H.,2018.Controls on different mineralization styles of the Dongbulage Mo and Taibudai Cu-(Mo)porphyry deposits in the
    Great Xing'an range,NE China.Journal of Asian Earth Sciences,https://doi.org/10.1016/j.jseaes.2018.01.028.
    Zwahlen,C., Stefania,C.,Thomas,W.,Roger,R.,Christoph,H.,2014.The porphyry Cu-(Mo-Au)deposit at altar(Argentina):Tracing gold distribution by vein mapping and LA-ICP-MS mineral analysis.Economic Geology 109(5),1341-1358.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700