用户名: 密码: 验证码:
波形钢腹板矮塔斜拉桥施工阶段稳定性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis on Stability of Extradosed Cable-stayed Bridge with Corrugated Steel Webs under Construction
  • 作者:陈淮 ; 冯冠杰 ; 王艳 ; 李杰
  • 英文作者:CHEN Huai;FENG Guan-jie;WANG Yan;LI Jie;School of Civil Engineering, Zhengzhou University;
  • 关键词:桥梁工程 ; 稳定性分析 ; 有限元法 ; 波形钢腹板矮塔斜拉桥 ; 悬臂施工
  • 英文关键词:bridge engineering;;stability analysis;;FE method;;extradosed cable-stayed bridge with corrugated steel webs;;cantilever construction
  • 中文刊名:公路交通科技
  • 英文刊名:Journal of Highway and Transportation Research and Development
  • 机构:郑州大学土木工程学院;
  • 出版日期:2019-03-15
  • 出版单位:公路交通科技
  • 年:2019
  • 期:03
  • 语种:中文;
  • 页:99-105
  • 页数:7
  • CN:11-2279/U
  • ISSN:1002-0268
  • 分类号:U448.27
摘要
波形钢腹板矮塔斜拉桥以其新颖的结构形式、优良的受力特性、较好的材料利用效率,修建数量日益增多,因其多采用薄壁钢腹板和刚构薄壁高墩的结构形式,使得对该类桥型施工过程中稳定性问题的研究就显得尤为重要。研究方法:利用ANSYS有限元软件建立朝阳沟波形钢腹板矮塔斜拉桥空间块体+板壳组合单元精细计算模型,计算纯剪切荷载作用下钢腹板的失稳模态;选取施工关键阶段,计算悬臂施工状态的弹性稳定性;考虑材料非线性、几何非线性和混凝土材料的开裂和压碎特性,计算悬臂施工状态非线性稳定性。结果表明:波形钢腹板构造按弹性屈曲强度公式计算最小值为348.3 MPa(合成剪切屈曲),有限元方法计算的剪切屈曲最小值为517.9 MPa,均大于材料剪切屈服强度199 MPa,结构承载力按剪切屈服强度控制;矮塔斜拉桥拉索的弹性支撑作用,增强了波形钢腹板稳定性,施工中主要是主墩的平面内侧倾失稳,不会出现波形钢腹板的失稳情况;考虑材料非线性和几何非线性求得悬臂施工阶段的非线性稳定系数仅为弹性稳定系数的41%~34%,悬臂越长,非线性效应对稳定性的影响越突出;施工荷载对悬臂施工状态的稳定性影响很大,最不利工况下结构的非线性稳定系数为5.13,结构稳定性仍满足规范要求。
        With the new structural style, excellent mechanical performance and higher material utilization of extradosed bridge with corrugated steel webs, the number of this kind of bridge are increasing more and more. With application of thin-walled corrugated steel webs and rigid frame thin-walled high piers, the research on the stability of such kind of bridge during construction stage is becoming more and more important.Research methods: The instability modes of steel webs under pure shear force are obtained by utilizing the fine calculation model of Chaoyanggou extradosed cable-stayed bridge with corrugated steel webs which is modeled as space block and shell elements with ANSYS FE software. The elastic stability of the selected crucial cantilever construction stage is calculated. The nonlinear stability during cantilever construction stage is also calculated considering the material nonlinearity, geometric nonlinearity as well as concrete crush and crack. The result shows that(1) The minimum elastic buckling strength of the bridge corrugated steel webs calculated by the formula is 348.3 MPa(interactive shear buckling), and that calculated by the finite element method is 517.9 MPa, which are all larger than the material shear yield strength(199 MPa). The bearing capacity of structure is controlled by the shear yield strength.(2) The stability happened happened of corrugated steel webs is enhanced because of the elastic supports of bridge cables, so the main instability mode is not the corrugated steel webs instability, it is the in-plane lateral buckling of main pier during the construction stage.(3) The nonlinear stability coefficient of cantilever construction stage considering material and geometric nonlinearity is 41%-34% of elastic stability coefficient. When the cantilever length increases, the influence of nonlinear effect on the stability will become more obvious.(4) The construction loads have significant impact on the stability of cantilever construction stage, the nonlinear stability coefficient under the most unfavorable load case is only 5.13, but the structure stability still satisfies the specification requirements.
引文
[1]聂建国,陶慕轩,吴丽丽,等.钢-混凝土组合结构桥梁研究新进展[J].土木工程学报,2012,45(6):110-122.NIE Jian-guo,TAO Mu-xuan,WU Li-li,et al.Advances of Research on Steel-concrete Composite Bridges[J].China Civil Engineering Journal,2012,45(6):110-122.
    [2]卜一之,赵雷,李乔.苏通长江大桥结构非线性稳定性研究[J].土木工程学报,2013,46(1):84-91.BU Yi-zhi,ZHAO Lei,LI Qiao.Structural Nonlinear Stability Analysis of Sutong Yangtze River Bridge[J].China Civil Engineering Journal,2013,46(1):84-91.
    [3]赵雷,孙才志,杨兴旺.鄂东长江大桥施工过程非线性稳定性分析[J].西南交通大学学报,2012,47(5):741-747.ZHAO Lei,SUN Cai-zhi,YANG Xing-wang.Stability Analysis of Edong Yangtze River Bridge during Construction[J].Journal of Southwest Jiaotong University,2012,47(5):741-747.
    [4]王艳,魏春明,陈淮.部分斜拉桥施工力学性能分析[J].桥梁建设,2012,42(2):46-52.WANG Yan,WEI Chun-ming,CHEN Huai.Analysis of Mechanical Properties of Extradosed Bridge in Construction Process[J].Bridge Construction,2012,42(2):46-52.
    [5]辛延甫,王雪霁,侯炜,等.考虑桩土作用的高墩大跨连续结构几何非线性效应分析[J].公路交通科技,2017,34(11):84-90.XIN Yan-fu,WANG Xue-ji,HOU Wei,et al.Analysis on Geometric Nonlinear Effect of High-pier and Long-span Continuous Structure Considering Pile-soil Interaction[J].Journal of Highway and Transportation Research and Development,2017,34(11):84-90.
    [6]李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,2003.LI Guo-hao.Stability and Vibration of Bridge Structure[M].Beijing:China Railway Publishing House,2003.
    [7]郭兰英.单肢箱形薄壁高墩与双肢矩形薄壁高墩稳定性比较研究[J].公路交通科技,2013,30(9):87-93.GUO Lan-ying.Comparative Study on Stability of Singlelimb Box and Double-limb Rectangle Thin-wall High-rise Piers[J].Journal of Highway and Transportation Research and Development,2013,30(9):87-93.
    [8]聂建国,朱力,唐亮.波形钢腹板的抗剪强度[J].土木工程学报,2013,46(6):97-109.NIE Jian-guo,ZHU Li,TANG Liang.Shear Strength of Trapezoidal Corrugated Steel Webs[J].China Civil Engineering Journal,2013,46(6):97-109.
    [9]陈华婷,迟啸起,黄艳.正弦波形波纹腹板工字型钢板梁的抗剪强度[J].公路交通科技,2013,30(5):38-46.CHEN Hua-ting,CHI Xiao-qi,HUANG Yan.Shear Strength of I-shaped Steel Plate Girder with Sinusoidally Corrugated Webs[J].Journal of Highway and Transportation Research and Development,2013,30(5):38-46.
    [10]胡华万,李俊,强士中.波形钢腹板PC组合箱梁剪切屈曲性能研究[J].铁道工程学报,2011,28(2):80-83,102.HU Hua-wan,LI Jun,QIANG Shi-zhong.Study on Shear Buckling Property of Corrugated Steel Web PC Combined Box Girder[J].Journal of Railway Engineering Society,2011,28(2):80-83,102.
    [11]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003.GUO Zhen-hai,SHI Xu-dong.Reinforced Concrete Theory and Analysis[M].Beijing:Tsinghua University Press,2003.
    [12]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2005.JIANG Jian-jing,LU Xin-zheng,YE Lie-ping.Finite Element Analysis of Concrete Structure[M].Beijing:Tsinghua University Press,2005.
    [13]刘保东,李祖硕,陈海波,等.变截面波形钢腹板连续组合箱梁破坏试验研究[J].铁道工程学报,2018,35(3):38-44.LIU Bao-dong,LI Zu-shuo,CHEN Hai-bo,et al.Research on the Failure Experiment on the Continuous Composite Box Girder with Variable Cross-section Corrugated Steel Webs[J].Journal of Railway Engineering Society,2018,35(3):38-44.
    [14]YI J,GIL H,YOUM K,et al.Interactive Shear Buckling Behavior of Trapezoidally Corrugated Steel Webs[J].Engineering Structures,2008,30(6):1659-1666.
    [15]JTG F80-1-2012,公路工程质量检验评定标准[S].JTG F80-1-2012,Quality Inspection and Evaluation Standards for Highway Engineering[S].
    [16]马如进,李忠鹏.连续梁倒拆施工倾覆稳定性的体系可靠度方法[J].同济大学学报:自然科学版,2015,43(8):1167-1173.MA Ru-jin,LI Zhong-peng.System Reliability Method to Analyze Overturning Stability of Demolition Construction of Continuous Beam Bridges[J].Journal of Tongji University:Natural Science Edition,2015,43(8):1167-1173.
    [17]张武洪,黄元元.基于可靠度反分析理论的连续梁桥悬臂施工整体倾覆稳定安全系数评估[J].施工技术,2016,45(增2):319-322.ZHANG Wu-hong,HUANG Yuan-yuan.Overturning Stability Safety Factors Assessment of Continuous Girder Bridges in Cantilever Construction Based on Reliability Theory[J].Construction Technology,2016,45(S2):319-322.
    [18]JTG T D60-01-2004,公路桥梁抗风设计规范[S].JTG T D60-01-2004,Wind-resistant Design Specification for Highway Bridges[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700