用户名: 密码: 验证码:
固井水泥浆侵入对煤储层压裂裂缝延展的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Impact of cement slurry invasion on the propagation of hydraulic fractures in coal reservoirs
  • 作者:陈立超 ; 王生维 ; 张典坤 ; 李瑞 ; 吕帅锋
  • 英文作者:Chen Lichao;Wang Shengwei;Zhang Diankun;Li Rui;Lü Shuaifeng;School of Mining and Technology, Inner Mongolia University of Technology;State Key Laboratory of Coal and CBM Co-mining//Jincheng Anthracite Mining Group;Faculty of Earth Resources, China University of Geosciences;
  • 关键词:煤层气井 ; 固井水泥浆侵入 ; 水力压裂 ; 破裂压力当量 ; 裂缝延展 ; 沁水盆地 ; 郑庄区块
  • 英文关键词:CBM well;;Cement invasion;;Hydraulic fracturing;;Fracture pressure equivalent;;Fracture propagation;;Qinshui Basin;;Zhengzhuang Block
  • 中文刊名:天然气工业
  • 英文刊名:Natural Gas Industry
  • 机构:内蒙古工业大学矿业学院;煤与煤层气共采国家重点实验室·晋煤集团;中国地质大学(武汉)资源学院;
  • 出版日期:2019-08-25
  • 出版单位:天然气工业
  • 年:2019
  • 期:08
  • 基金:国家科技重大专项“晋城矿区压裂裂缝形态观测及重点矿井井下压裂裂缝形成规律研究”(编号:2016ZX05067001-007);; 山西省煤层气联合研究基金项目“沁水盆地南部煤储层压裂液滤失机理研究”(编号:2016012007)
  • 语种:中文;
  • 页:80-87
  • 页数:8
  • CN:51-1179/TE
  • ISSN:1000-0976
  • 分类号:TE37
摘要
目前针对于煤层气井近井部位固井水泥浆侵入的方式和形态规模、固井水泥浆侵入对煤储层压裂裂缝延展的影响机制及其与煤层气井开采效果的内在关联方面的研究较少。为了深化煤储层压裂裂缝延展理论并给煤层气井水力压裂施工方案优化提供支撑,选取沁水盆地煤储层中基质—裂隙发育组合迥异的区块,对部署在不同部位气井的固井水泥浆侵入方式和水泥环形态规模进行了系统刻画,分析了不同固井水泥浆侵入方式下的压裂力学判据,针对深部气井难于开挖解剖其固井水泥浆侵入特征的实际问题,提出了破裂压力当量的定义,在此基础上,对郑庄区块39口煤层气井的压裂排采数据进行了分析,总结了固井水泥浆不同侵入方式对煤层气井压裂、排采的影响。研究结果表明:①煤层气井固井水泥浆的侵入方式包含固井水泥浆正常充注型(硬煤基质)、加厚型(构造煤)及煤岩—水泥胶结界面型(硬煤裂隙带)等3种;②由破裂压力当量(pt)小于1.50 MPa,固井水泥浆均匀充注在气井井眼—套管环空,可以判断气井位于硬煤基质;由pt介于1.50~9.00 MPa,固井水泥浆沿井壁构造节理缝挤侵入储层内形成胶结滤饼,可以判断气井位于硬煤裂隙带;由pt大于9.00 MPa,固井水泥在井眼环空垮塌空间加厚形成纺锤体,可以判断气井位于构造煤;③位于硬煤基质的气井在排采期间气井产气量缓慢增加到峰值,并可在峰值部位稳产较长时间,而后产气量缓慢下降,位于构造煤的气井在排采初期很快见产,随后产气量迅速衰减,硬煤裂隙带气井在排采初期产气量快速上升并达到峰值,但稳产时间较短,而后产气量缓慢下降。
        At present, invasion mode, morphology and scale of cement slurry in the immediate vicinity of a coalbed methane(CBM) well and their impacts on the propagation of hydraulic fractures in coal reservoirs and their intrinsic relationships with the production effects of the CBM well were less researched. In order to deepen the theories on the propagation of hydraulic fractures in coal reservoirs and provide support for the optimization of CBM well hydraulic fracturing scheme, this paper selected the blocks in the Qinshui Basin whose matrix–fracture development combinations in coal reservoirs are totally different as the research objects. The invasion modes of cement slurry and the morphologies and scales of cement sheath in the wells deployed at different locations were characterized systematically,and the fracturing mechanics criteria in different invasion modes of cement slurry were analyzed. Then, in view of the drilling difficulties of deep gas wells, the actual problems related to the invasion characteristics of cement slurry were dissected, and the definition of fracture pressure equivalent was proposed. Finally, the fracturing and production data of 39 CBM wells in the Zhengzhuang Block were analyzed,and the influences of different invasion modes of cement slurry on the fracturing and production of CBM wells were summarized. And the following research results were obtained. First, the invasion modes of cement slurry in CBM wells include three types, i.e., normal cementing type [primary structural coal matrix(PCM)], thickening type [tectonic coal(TC)] and coal–cement cementing interface type[primary structural coal fracture(PCF)]. Second, when the fracture pressure equivalent(pt) is less than 1.50 MPa, cement slurry is evenly filled in borehole–casing annulus of gas well, which indicates that the gas well is located at PCM; when pt is in the range of 1.50–9.00 MPa, cement slurry invades into the reservoir through the structural joint fissures to form cemented filter cakes, which indicates that the gas well is located at PCF; and when pt is greater than 9.00 MPa, cement slurry thickens to form spindles in the collapse space of hole annulus, which indicates that the gas well is located at TC. Third, the gas production rate of the CBM well deployed at PCM remains stable for a long time after increasing slowly to the peak, and then declines slowly. That of CBM well deployed at TC reaches its peak value rapidly at the initial stage of the production and then decreases quickly. It's the gas production rate of the CBM well deployed at PCF increases rapidly to the peak value at the initial stage of the production, but its stable production lasts short, and then it declines slowly.
引文
[1]郑力会,李秀云,苏关东,赵炜,巩旭光,陶秀娟.煤层气工作流体储层伤害评价方法的适宜性研究[J].天然气工业, 2018,38(9):28-39.Zheng Lihui, Li Xiuyun, Su Guandong, Zhao Wei, Gong Xuguang&Tao Xiujuan. Applicability of working fluid damage assessment methods for coalbed methane reservoirs[J]. Natural Gas Industry, 2018, 38(9):28-39.
    [2]孙晗森,王成文.固井水泥浆对裂缝割理发育型煤层气储层的伤害机理[J].天然气工业, 2018, 38(9):82-87.Sun Hansen&Wang Chengwen. Damage mechanism of cement slurry to CBM reservoirs with developed fractures and cleats:A case study from Eastern Yunnan and Western Guizhou in China[J]. Natural Gas Industry, 2018, 38(9):82-87.
    [3]Huang Wei'an, Lei Ming, Qiu Zhengsong, Leong Yee-Kwong,Zhong Hanyi&Zhang Shifeng. Damage mechanism and protection measures of a coalbed methane reservoir in the Zhengzhuang Block[J]. Journal of Natural Gas Science and Engineering, 2015,26:683-694.
    [4]Nelson EB&Guillot D. Well cementing[M]. Texas:Schlumberger, 2006.
    [5]朱庆忠,杨延辉,左银卿,张学英,张俊杰,宋洋,郎淑敏.中国煤层气开发存在的问题及破解思路[J].天然气工业, 2018,38(4):96-100.Zhu Qingzhong, Yang Yanhui, Zuo Yinqing, Zhang Xueying,Zhang Junjie, Song Yang&Lang Shumin. CBM development in China:Challenges and solutions[J]. Natural Gas Industry, 2018,38(4):96-100.
    [6]Palmer I. Coalbed methane completions:A world view[J]. International Journal of Coal Geology, 2010, 82(3-4):184-195.
    [7]熊建华,黄中伟,李根生,史怀忠,王开龙,申瑞臣,等.一种新型绕煤层固井井下装置的研制[J].中国石油大学学报(自然科学版), 2012, 36(4):102-106.Xiong Jianhua, Huang Zhongwei, Li Gensheng, Shi Huaizhong,Wang Kailong, Shen Ruichen, et al. A new bypass coalbed cementing downhole device for coalbed methane well[J]. Journal of China University of Petroleum(Natural Sciences), 2012, 36(4):102-106.
    [8]刘硕琼,李德旗,袁进平,齐奉忠,沈吉云,郭满满.页岩气井水泥环完整性研究[J].天然气工业, 2017, 37(7):76-82.Liu Shuoqiong, Li Deqi, Yuan Jinping, Qi Fengzhong, Shen Jiyun&Guo Manman. Cement sheath integrity of shale gas wells:A case study from the Sichuan Basin[J]. Natural Gas Industry, 2017,37(7):76-82.
    [9]步玉环,侯献海,郭胜来.低温固井水泥浆体系的室内研究[J].钻井液与完井液, 2016, 33(1):79-83.Bu Yuhuan, Hou Xianhai&Guo Shenglai. Study on low temperature cementing slurry[J]. Drilling Fluid&Completion Fluid,2016, 33(1):79-83.
    [10]王道宽,史亚运,乌效鸣,吴川.渤钻低密度固井水泥浆降低煤层气储层伤害的实验[J].煤田地质与勘探, 2015, 43(3):105-109.Wang Daokuan, Shi Yayun, Wu Xiaoming&Wu Chuan. Experimental research on decreasing coalbed methane formation damage by using low density cement slurry[J]. Coal Geology&Exploration, 2015, 43(3):105-109.
    [11]俞绍诚.水力压裂技术手册[M].北京:石油工业出版社,2010.Yu Shaocheng. Handbook of hydraulic fracturing technology[M].Beijing:Petroleum Industry Press, 2010.
    [12]王生维,陈立超.煤储层水力压裂裂缝延展机制[M].武汉:中国地质大学出版社, 2017.Wang Shengwei&Chen Lichao. Hydraulic fracture propagation mechanism of coal reservoir[M]. Wuhan:China University of Geosciences Press, 2017.
    [13]陈立超,王生维,何俊铧,张晓飞,胡奇,张业畅.煤层气藏非均质性及其对气井产能的控制[J].中国矿业大学学报, 2016,45(1):136-141.Chen Lichao, Wang Shengwei, He Junhua, Zhang Xiaofei, Hu Qi&Zhang Yechang. CBM reservoir heterogeneity and its control on gas wells productivity[J]. Journal of China University of Mining&Technology, 2016, 45(1):136-141.
    [14]刘洪林,王勃,王烽,李贵中,秦勇.沁水盆地南部地应力特征及高产区带预测[J].天然气地球科学, 2007, 18(6):885-890.Liu Honglin, Wang Bo, Wang Feng, Li Guizhong&Qin Yong.Ground stress characteristics and prediction of high productivity zone in south of Qinshui Basin[J]. Natural Gas Geoscience, 2007,18(6):885-890.
    [15]王猛,朱炎铭,李伍,钟和清,王义海.沁水盆地郑庄区块构造演化与煤层气成藏[J].中国矿业大学学报, 2012, 41(3):425-431.Wang Meng, Zhu Yanming, Li Wu, Zhong Heqing&Wang Yihai.Tectonic evolution and reservoir formation of coalbed methane in Zhengzhuang Block of Qinshui Basin[J]. Journal of China University of Mining&Technology, 2012, 41(3):425-431.
    [16]林建平.山西太古代—中生代构造应力场[J].现代地质,1991, 5(4):355-365.Lin Jianping. Tectonic stress fields of Archaean-Mesozoic in Shanxi province[J]. Geoscience, 1991, 5(4):355-365.
    [17]胡秋嘉,贾慧敏,祁空军,樊彬,于家盛,刘春春,等.高煤阶煤层气井单相流段流压精细控制方法——以沁水盆地樊庄—郑庄区块为例[J].天然气工业, 2018, 38(9):76-81.Hu Qiujia, Jia Huimin, Qi Kongjun, Fan Bin, Yu Jiasheng, Liu Chunchun, et al. A fine control method of flowing pressure in single-phase flow section of high-rank CBM gas development wells:A case study from the Fanzhuang–Zhengzhuang Block in the Qinshui Basin[J]. Natural Gas Industry, 2018, 38(9):76-81.
    [18]Civan F. Non-isothermal permeability impairment by fines migration and deposition in porous media including dispersive transport[J]. Transport in Porous Media, 2010, 85:233-258.
    [19]程远方,徐太双,吴百烈,李娜,袁征,孙元伟,等.煤岩水力压裂裂缝形态实验研究[J].天然气地球科学, 2013, 24(1):134-137.Cheng Yuanfang, Xu Taishuang, Wu Bailie, Li Na, Yuan Zheng,Sun Yuanwei, et al. Experimental study on the hydraulic fractures'morphology of coal bed[J]. Natural Gas Geoscience, 2013, 24(1):134-137.
    [20]陈立超,王生维,何俊铧,张业畅,胡奇,吕帅峰.煤粉源集合体对水力压裂效果的影响[J].中国矿业大学学报, 2015,44(3):526-531.Chen Lichao, Wang Shengwei, He Junhua, Zhang Yechang, Hu Qi&LüShuaifeng. Study of the impact of coal fines source collection on hydraulic fracturing effect[J]. Journal of China University of Mining&Technology, 2015, 44(3):526-531.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700