用户名: 密码: 验证码:
胞间活性氧产生对盐胁迫下两种小麦叶抗氧化反应的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of apoplastic reactive oxygen species on the antioxidant responses in the leaves of two wheat seedlings under salt stress
  • 作者:杨颖丽 ; 吕丽荣 ; 徐玉玲 ; 高晓霞 ; 李琼 ; 李晶 ; 司廉邦
  • 英文作者:Yang Ying-li;Lü Li-rong;Xu Yu-ling;Gao Xiao-xia;Li Qiong;Li Jing;Si Lian-bang;College of Life Sciences, Northwest Normal University;
  • 关键词:小麦 ; 盐胁迫 ; 渗透调节 ; 抗氧化酶
  • 英文关键词:wheat;;NaCl stress;;osmotic adjustment;;antioxidant enzyme
  • 中文刊名:兰州大学学报(自然科学版)
  • 英文刊名:Journal of Lanzhou University(Natural Sciences)
  • 机构:西北师范大学生命科学学院;
  • 出版日期:2019-08-15
  • 出版单位:兰州大学学报(自然科学版)
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金项目(31470464,31360094)
  • 语种:中文;
  • 页:62-70
  • 页数:9
  • CN:62-1075/N
  • ISSN:0455-2059
  • 分类号:S512.1
摘要
以春小麦新品种"陇春27号(27号)"和"陇春30号(30号)"为研究材料,分析过氧化氢酶(CAT)和二苯基氯化碘盐(DPI)对NaCl胁迫下小麦叶片渗透性调节和抗氧化反应的影响.结果表明,盐诱导两种小麦叶中w(脯氨酸)、ρ(可溶性糖)、w(可溶性蛋白)和c(丙二醛)均增加, CAT的加入减少了盐诱导的27号ρ(可溶性糖)及30号w(脯氨酸)和w(可溶性蛋白)的积累, DPI提高了两种小麦w(脯氨酸)、ρ(可溶性糖)和c(丙二醛),降低了w(可溶性蛋白).盐处理导致小麦27号c(O2·-)、w(H2O2)、超氧化物歧化酶(SOD)和抗坏血酸过氧化物酶(APX)活性均降低,使c (·OH)及过氧化物酶(POD)活性增高;小麦30号c(O2·-)、c (·OH)及APX活性增高, CAT和POD活性减弱.与单独盐处理相比,外源CAT使盐处理下两种小麦w(H2O2)降低,谷胱甘肽还原酶(GR)活性及27号APX和30号CAT活性增强; NaCl+DPI处理导致两种小麦w(H2O2)及27号APX活性降低,两种小麦c(O2·-)及POD和GR活性均增高, 30号小麦SOD与APX活性变化与27号相反.表明盐胁迫提高了两种小麦叶中渗透性调节物w(脯氨酸)、ρ(可溶性糖)和w(可溶性蛋白),导致不同的抗氧化反应,可能与胞间H2O2及质膜烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶O2·-的产生有关,因为胞间H2O2的清除和NADPH氧化酶活性的抑制改变了盐诱导两种小麦的渗透性调节和抗氧化反应,且二者的效应不同.
        New spring wheat(Triticum aestivum cv. Longchun 27 and Longchun 30) seedlings were used to investigate the effects of exogenous catalase(CAT) and diphenylene iodonium(DPI) on osmotic adjustment substances and antioxidation responses in the leaves of wheat seedlings under salt stress and the results showed that w(proline), ρ(soluble sugar), w(soluble protein) and c(malondialdehyde) were elevated in the leaves of two wheat seedlings exposed to 100 mmol/L NaCl. The presence of CAT blocked the accumulation of ρ(soluble sugar) in Longchun 27 and the increases of w(proline) and w(soluble protein)in Longchun 30 under 100 mmol/L NaCl treatment. The addition of DPI further elevated the amount of w(proline), ρ(soluble sugar) and c(malondialdehyde), but lowered the w(soluble protein) in the leaves of two wheat seedlings treated by NaCl. Salt stress resulted in decreases of c(superoxide anion(O2·-))and w(H_2O_2) as well as superoxide dismutase(SOD) and ascorbate peroxidase(APX) activities, but in an elevation of c(·OH) level and peroxidase(POD) activity in Longchun 27 leaves. c(O2·-) and c(·OH), as well as the activity of APX rose while CAT and POD activities decreased, when Longchun 30 seedlings were stressed with salinity. Compared with salt stress alone, NaCl + CAT treatment reduced the w(H_2O_2)but stimulated glutathione reductase(GR) in the leaves of two wheat seedlings together with APX in Longchun 27 and CAT in Longchun 30. NaCl+DPI led to a decrease of w(H_2O_2) but an increase of c(O_2·~-) generation as well as POD and GR activities in the leaves of Longchun 27 and Longchun 30. Taken together, salinity stress increased w(proline), ρ(soluble sugar) and w(soluble protein), and resulted in different antioxidation responses in the leaves of the two wheat seedlings, which might be associated with the production of apoplastic H_2O_2 and NADPH oxidase-dependent O_2·~-, because the elimination of apoplastic H_2O_2 and the inhibition of NADPH oxidase altered the salinity-induced osmotic adjustment and antioxidation responses, and their effects were different.
引文
[1]李建国,濮励杰,朱明,等.土壤盐渍化研究现状及未来研究热点[J].地理学报, 2012, 67(9):1233-1245.
    [2]刘艳丽,许海霞,刘桂珍,等.小麦耐盐性研究进展[J].中国农学通报, 2008, 24(11):202-207.
    [3]武香.盐胁迫下植物的渗透调节及其适应性研究[D].北京:中国林业科学研究院, 2012.
    [4] Ahmad P, Latef A A A, Hashem A, et al. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea[J]. Front in Plant Science, 2016, 7(31):347-357.
    [5] Bienert G P, Chaumont F. Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide[J]. Biochimica et Biophysica Acta-General Subjects, 2014, 1840(5):1596-1604.
    [6] Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55(1):373-399.
    [7]廖岩,彭友贵,陈桂珠.植物耐盐性机理研究进展[J].生态学报, 2007, 27(5):2077-2089.
    [8]张雪婷,杨文雄,杨芳萍,等.春小麦新品种陇春27号[J].甘肃农业科技, 2012(1):50-51.
    [9]王世红,杨文雄,刘效华,等.高产广适春小麦新品种:陇春30号[J].麦类作物学报, 2013, 33(2):407-408.
    [10] Bastes L S, Waldren R P, Teare I D. Rapid determination of free protein for water-stress studies[J]. Plant and Soil, 1973, 39(1):205-207.
    [11]朱广廉.植物生理学实验[M].北京:北京大学出版社,1990.
    [12] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1):248-254.
    [13] Sayed N H M. Phylogenetic relationship among five geckos from egypt based on RAPD-PCR and protein electrophoresis(SDS-PAGE)[J]. The Journal of Basic and Applied Zoology, 2012, 65(3):184-190.
    [14] Sui N, Li M, Liu X Y, et al. Response of xanthophyll cycle and chlorplastic antioxidant enzymes to chilling stress in tomato over-expressing glycerol-3-phosphate acyltransferase gene[J]. Photosynthetica, 2007, 45(3):447-454.
    [15] Sergiev I, Alexieva V, Karanov E. Effect of spermine,atrazine and combination between them on some endogenous protective systems and stress markers in plants[J].Comptes Rendus de l'Academie Bulgare des Sciences,1997, 51:121-124.
    [16] Halliwell B, Jmc G, Aruoma O I. The deoxyribose method:a simple"test-tube"assay for determination of rate constants for reactions of hydroxyl radicals[J]. Analytical Biochemistry, 1987, 165(1):215-219.
    [17] Dhindsa R S, Matowe W. Drought tolerance in two mosses:correlated with enzymatic defence against lipid peroxidation[J]. Journal of Experimental Botany, 1981,32(1):79-91.
    [18] Aebi H. Catalase in vitro[J]. Method in Enzymology,1984, 105:121-126.
    [19] Rao M V, Palyath G, Ormrod D P. Ultraviolet-B-and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana[J]. Plant Physiology,1996, 110(1):125-136.
    [20] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorabate-specific peroxidase in spinach chloroplasts[J]. Plant and Cell Physiology, 1981, 22(5):867-880.
    [21] Foster J G, Hess J L. Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen[J]. Plant Physiology, 1980, 66(3):482-487.
    [22] Aravind P, Prasad M N V. Zinc alleviates cadmiuminduced oxidative stress in Ceratophyllum demersum L:a free floating fresh water macrophyte[J]. Plant Physiology and Biochemistry, 2003, 41(4):391-397.
    [23]朱玉鹏,孟祥浩,盖伟玲,等.盐胁迫对冬小麦花后抗氧化酶、渗透调节物质的影响[J].中国农学通报,2017, 33(19):1-6.
    [24]汪月霞,孙国荣,王建波,等. NaCl胁迫下星星草幼苗MDA含量与膜透性及叶绿素荧光参数之间的关系[J].生态学报, 2006, 26(1):122-129.
    [25]程淑娟,唐东芹,刘群录.盐胁迫对两种忍冬属植物活性氧平衡的影响[J].南京林业大学学报:自然科学版,2013, 37(1):137-141.
    [26] Yang Shuang-long, Lan Shan-shan, Gong Ming. Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings[J]. Journal of Plant Physiology, 2009, 166(15):1694-1699.
    [27]刘建新,王金成,王瑞娟,等.燕麦幼苗对盐胁迫及过氧化氢响应的调节[J].生态学杂志, 2015, 34(9):2506-2511.
    [28] Verslues P E, Kim Y S, Zhu J K. Altered ABA, proline and hydrogen peroxide in an Arabidopsis glutamate:glyoxylate aminotransferase mutant[J]. Plant Molecular Biology, 2007, 64(1/2):205-217.
    [29] Li Wen-yan, Chen Bing-xian, Chen Zhong-jian, et al.Reactive oxygen species generated by NADPH oxidases promote radicle protrusion and root elongation during rice seed germination[J]. Internation Journal of Molecular Sciences, 2017, 18(1):110-127.
    [30]周丛义,吴国利,段壮芹,等. H2O2-NOX系统:一种植物体内重要的发育调控与胁迫响应机制[J].植物学报, 2010, 45(5):615-631.
    [31] Ren C G, Li X, Liu X L, et al. Hydrogen peroxide regulated photosynthesis in C4-pepc transgenic rice[J]. Plant Physiology and Biochemistry, 2014, 74:218-229.
    [32]张锦广. NADPH氧化酶参与盐胁迫诱导的烟草悬浮细胞活性氧的产生[D].北京:中国农业大学, 2005.
    [33] Rejeb K B, Vos L D, Disquet I L. Hydrogen peroxide produced by NADPH oxidases increase proline accumulation during salt or mannitol stress in Arabidopsis thaliana[J]. New Phytologist, 2015, 208(4):1138-1148.
    [34] Giberti S, Funck D, Forlani G.Δ1-pyrroline-5-carboxylate reductase from Arabidopsis thaliana:stimulation or inhibition by chloride ions and feedback regulation by proline depend on whether NADPH or NADH acts as cosubstrate[J]. New Phytologist, 2014, 202(3):911-919.
    [35]张义凯,崔秀敏,杨守祥,等.外源NO对镉胁迫下番茄活性氧代谢及光合特性的影响[J].应用生态学报,2010, 21(6):1432-1438.
    [36]仇奕之,李宜坤,杨鹏军,等.甘氨酸对不同胁迫条件下高山离子芥试管苗的保护作用[J].兰州大学学报:自然科学版, 2018, 54(2):200-207.
    [37]时振振,李胜,杨柯,等.盐胁迫下豌豆幼苗对内外源NO的生理生化响应[J].草业学报, 2014, 23(5):193-200.
    [38]蔡天革,王鹏,唐凤德.盐胁迫对燕麦种子萌发和幼苗抗氧化酶的影响[J].辽宁大学学报:自然科学版, 2016,43(1):74-78.
    [39]李金亭,赵萍萍,邱宗波,等.外源H2O2对盐胁迫下小麦幼苗生理指标的影响[J].西北植物学报, 2012, 32(9):1796-1801.
    [40] Rejeb K B, Benzarti M, Debez A, et al. NADPH oxidase-dependent H2O2production is required for salt-induced antioxidant defense in Arabidopsis thaliana[J].Journal of Plant Physiology, 2015, 174:5-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700