用户名: 密码: 验证码:
持续干燥对消落带沉积物磷形态和吸附特征的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:EFFECTS OF CONTINUOUS DRYING ON PHOSPHORUS FORMS AND ADSORPTION CHARACTERISTICS IN SEDIMENTS OF HYDRO-FLUCTUATION BELT
  • 作者:郝文超 ; 王从锋 ; 杨正健 ; 刘德富 ; 纪道斌 ; 赵萍 ; 丹勇 ; 胡子龙
  • 英文作者:HAO Wen-chao;WANG Cong-feng;YANG Zheng-jian;LIU De-fu;JI Dao-bin;ZHAO Ping;DAN Yong;HU Zi-long;College of Hydraulic and Environmental Engineering, China Three Gorges University;Collaborative Innovation Center for Geo-hazards and Eco-Environment in Three Gorges Area;Hubei Key Laboratory of Ecological Restoration of River-lakes and Algal Utilization, Hubei University of Technology;
  • 关键词:持续干燥 ; 磷形态 ; 吸附特征 ; 沉积物
  • 英文关键词:continuous drying;;phosphorus form;;adsorption characteristics;;sediment
  • 中文刊名:环境工程
  • 英文刊名:Environmental Engineering
  • 机构:三峡大学水利与环境学院;三峡地区地质灾害与生态环境湖北省协同创新中心;湖北工业大学河湖生态修复与藻类利用湖北省重点实验室;
  • 出版日期:2019-01-15
  • 出版单位:环境工程
  • 年:2019
  • 期:01
  • 基金:国家自然基金重大研究计划(91647207)
  • 语种:中文;
  • 页:26-31
  • 页数:6
  • CN:11-2097/X
  • ISSN:1000-8942
  • 分类号:X524
摘要
以澜沧江流域功果桥库区消落带沉积物为研究对象,研究了持续干燥状态下磷形态和等温吸附变化特征。结果表明:持续干燥对磷和铁形态有显著影响,弱吸附态磷(NH_4Cl-P)、铝结合态磷(NaOH-rP)无机磷(IP)和结晶度较高的碳酸盐铁(Carb-Fe)含量增加,而可还原态磷(BD-P)、聚磷/有机磷(NaOH-nrP)和还原铁氧化物(Ox-Fe)含量减少;沉积物等温吸附特征也有显著变化,最大吸附磷酸盐总量(Q_(max))和吸附系数下降,表明重复短暂的湿润和干燥周期会导致磷的沉积亲和力不断下降,从而增加沉积物内源磷向水体释放的潜在性。
        The phosphorus forms and isothermal adsorption characteristics in sediments collected in hydro-fluctuation belt of Gongguoqiao Reservoir Area, Lancang River Basin, were studied under continuous drying condition. The results showed that: continuous drying had significant effect on the phosphorus and iron forms, the contents of weakly adsorbed phosphorus(NH_4Cl-P), aluminum-bound phosphorus(NaOH-rP), inorganic phosphorus(IP) and carbonate iron(Carb-Fe) with high crystallinity increased, while contents of reducible phosphate(BD-P), polyphosphate/organophosphate(NaOH-nrP) and reductive iron oxide(Ox-Fe) decreased; the isothermal adsorption characteristics of the sediments also changed significantly, and the maximum total amount of phosphate adsorbed(Q_(max)) and adsorption coefficient decreased, which indicated that repeated short periods of wetting and drying would lead to continuous decline of phosphorus deposition affinity, thus increasing the potential release of endogenous phosphorus into water.
引文
[1] 马俊超, 李琼芳, 陆国宾,等. 三峡-葛洲坝梯级水库不同蓄水阶段对其下游泥沙特性的影响分析[J].水资源保护,2016, 32(1):75-78.
    [2] Parsons C T, Rezanezhad F, O′connell D W, et al. Sediment phosphorus speciation and mobility under dynamic redox conditions[J]. Biogeosciences, 2017, 14(14):1-36.
    [3] Sah R N, Mikkelsen D S. Effects of anaerobic decomposition of organic matter on sorption and transformations of phosphate in drained soils[J]. Soil Science, 1986, 142(5):346-351.
    [4] Baldwin D S, Mitchell A M. The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river-floodplain systems: a synthesis[J]. River Research & Applications, 2000, 16(5):457-467.
    [5] 刘洋, 吕俊平, 刘琪,等. 太原汾河蓄水区浮游植物细胞密度及其与营养元素的关系[J]. 生态学报, 2018, 38(3):991-1002.
    [6] 金相灿, 姜霞, 王琦,等. 太湖梅梁湾沉积物中磷吸附/解吸平衡特征的季节性变化[J]. 环境科学学报, 2008, 28(1):24-30.
    [7] 张秀梅. 湖泊沉积物磷形态分布特征及磷来源辨析:基于磷酸盐氧同位素方法[D].北京:中国科学院大学, 2016.
    [8] Vicente I D, Andersen F ?, Hansen H C B, et al. Water level fluctuations may decrease phosphate adsorption capacity of the sediment in oligotrophic high mountain lakes[J]. Hydrobiologia, 2010, 651(1):253-264.
    [9] Haynes R J, Swift R S. Effects of air-drying on the adsorption and desorption of phosphate and levels of extractable phosphate in a group of acid soils, New Zealand[J]. Geoderma, 1985, 35(2):145-157.
    [10] Rees G N. The effects of in situ drying on sediment-phosphate interactions in sediments from an old wetland[J]. Hydrobiologia, 2000, 431(1):3-12.
    [11] Kerr J G, Burford M, Olley J, et al. The effects of drying on phosphorus sorption and speciation in subtropical river sediments[J]. Marine & Freshwater Research, 2010, 61(8):928-935.
    [12] 王敬富, 陈敬安, 杨海全,等. 贵州红枫湖沉积物磷的生物有效性研究[J]. 地球与环境, 2016, 44(4):437-440.
    [13] Poulton S W, Canfield D E. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates[J]. Chemical Geology, 2005, 214(3):209-221.
    [14] 何佳, 陈春瑜, 邓伟明,等. 滇池水-沉积物界面磷形态分布及潜在释放特征[J]. 湖泊科学, 2015, 27(5):799-810.
    [15] 安文超, 张书武, 和慧,等. 南四湖及主要入湖河流河口区表层沉积物磷的形态与分布特征研究[J]. 环境科学学报, 2012, 32(4):895-901.
    [16] 吴金水, 肖和艾, 陈桂秋,等. 旱地土壤微生物磷测定方法研究[J]. 土壤学报, 2003, 40(1):70-78.
    [17] 吴金水,林启美,黄巧云,等. 土壤微生物生物量测定方法及其应用[M]. 北京:气象出版社, 2006.
    [18] Ruban V, López-sánchez J F, Pardo P, et al. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments-A synthesis of recent works[J]. Fresenius Journal of Analytical Chemistry, 2001, 370(2/3):224.
    [19] 周爱民. 生源要素磷(P)在天然沉积物-水界面上的吸附与分配[D]. 北京:中国科学院生态环境研究中心, 2005.
    [20] 张文强, 单保庆, 张洪,等. 基于液相31P核磁共振技术的河流沉积物有机磷提取剂选择研究[J]. 环境科学学报, 2014, 34(1):194-201.
    [21] 张润宇, 王立英, 刘超,等. 不同干燥方式对湖泊沉积物磷提取的影响[J]. 矿物学报, 2012, 32(3):100-107.
    [22] 徐进. 有机物对三价铁去除磷酸根影响的模型与实验研究[D]. 济南:山东大学, 2017.
    [23] 黄廷林, 周瑞媛, 夏超,等. 氧化还原电位及微生物对水库底泥释磷的影响[J]. 环境化学, 2014, 34(1):194-201.
    [24] 杨文斌, 唐皓, 韩超,等. 太湖沉积物铁形态分布特征及磷铁相关性分析[J]. 中国环境科学, 2016, 36(4):1145-1156.
    [25] 高丽, 侯金枝, 宋鹏鹏. 天鹅湖沉积物对磷的吸附动力学及等温吸附特征[J]. 土壤, 2013, 45(1):67-72.
    [26] 鲍林林, 李叙勇. 河流沉积物磷的吸附释放特征及其影响因素[J]. 生态环境学报, 2017, 26(2):350-356.
    [27] 张潆元, 黑鹏飞, 杨静,等. 本底吸附物对长江沉积物磷吸附容量的影响[J]. 环境科学研究, 2017, 30(4):545-551.
    [28] Attygalla N W, Baldwin D S, Silvester E, et al. The severity of sediment desiccation affects the adsorption characteristics and speciation of phosphorus[J]. Environmental Science Processes & Impacts, 2015, 18(1):64-71.
    [29] Birch H F. The effect of soil drying on humus decomposition and nitrogen availability[J]. Plant & Soil, 1958, 10(1):9-31.
    [30] 王君, 宋新山, 严登华,等. 多重干湿交替格局下土壤Birch效应的响应机制[J]. 中国农学通报, 2013, 29(27):120-125.
    [31] Baldwin D S. Effects of exposure to air and subsequent drying on the phosphate sorption characteristics of sediments from a eutrophic reservoir[J]. Limnology & Oceanography, 1996, 41(8):1725-1732.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700