用户名: 密码: 验证码:
基于AAO模板的高聚物纳米阵列薄膜的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress of Polymer Nano-array Thin Films Based on AAO Templates
  • 作者:鲁亚稳 ; 常胜男 ; 刘元军 ; 刘皓 ; 赵晓明 ; 李晓久
  • 英文作者:LU Yawen;CHANG Shengnan;LIU Yuanjun;LIU Hao;ZHAO Xiaoming;LI Xiaojiu;School of Textile Science and Engineering,Tianjin Polytechnic University;Institute of Smart Wearable Electronic Textiles,Tianjin Polytechnic University;
  • 关键词:多孔阳极氧化铝(AAO) ; 高聚物纳米阵列 ; 薄膜 ; 模板法
  • 英文关键词:anodic aluminum oxide(AAO);;polymer nano-array;;film;;template synthesis method
  • 中文刊名:材料导报
  • 英文刊名:Materials Reports
  • 机构:天津工业大学纺织科学与工程学院;天津工业大学智能可穿戴电子纺织品研究所;
  • 出版日期:2019-10-09
  • 出版单位:材料导报
  • 年:2019
  • 期:23
  • 基金:中国博士后科学基金(2016M591390);; 天津市自然科学基金(18JCYBJC18500);; 中国纺织工业联合会(2017060)~~
  • 语种:中文;
  • 页:142-150+159
  • 页数:10
  • CN:50-1078/TB
  • ISSN:1005-023X
  • 分类号:TB383.1;TB383.2
摘要
纳米材料是指特征尺寸或晶体尺寸在纳米级的一种超细材料,是由极其细小的颗粒所组成的固体材料。纳米材料因其纳米尺寸和大比表面积等特点,具有许多独特的物理性质和化学性质,被广泛应用于陶瓷、催化、光学、生物医学、环境保护等领域。纳米材料根据规整程度分为规整纳米材料和非规整纳米材料。非规整纳米材料,如静电纺丝制备的纳米纤维材料,具有较高的长径比,而准确地控制纳米材料的直径或者制备直径小于100 nm的纳米材料仍有较大的困难,并且非规整材料具有较低的结构取向性。而规整纳米材料多以阵列的形式呈现,如纳米棒、纳米柱、纳米纤维、纳米球以及核壳包覆等特殊结构,具有结构高度有序、尺寸一致、结构分布均匀等优点。纳米材料的制备方法根据制备手段主要分为物理法(物理粉碎法和物理凝聚法)和化学法(沉淀法、溶胶-凝胶法、模板合成法、自组装法)。模板合成法可以精确控制纳米材料尺寸而且模板可以大量复制,因此,规整纳米材料的制备多采用模板合成法。近年来,以高聚物纳米阵列为敏感元件制备的柔性传感器、纳米发电机、超级电容器和生物医学检测器件等因具有高灵敏度、高精度和小型化等优点而备受关注。本文对多孔阳极氧化铝(AAO)模板和高聚物纳米阵列薄膜的制备方法进行了系统的概述,并对高聚物纳米阵列制备方法的优缺点和应用进行了归纳,还探讨了高聚物纳米阵列的现存问题和应用前景,为AAO模板和高聚物纳米阵列薄膜的制备及应用提供了参考。
        Nanomaterials refer to an ultra-fine material with a characteristic size or crystal size on the order of nanometers,which is a solid material composed of extremely fine particles. Due to the nanometer size and large specific surface area,nanomaterials have many unique physical and chemical properties,which are widely used in ceramics,catalysis,optics,biomedicine,environmental protection and other fields.Nanomaterials are classified into regular nanomaterials and irregular nanomaterials according to the degree of regularity. Non-regular nanomaterials,such as nanofiber materials prepared by electrospinning,have a high aspect ratio. However,the diameter accuracy of nanofibers having a diameter of less than 100 nm is very difficult. Moreover,the irregular nanomaterials have a low structural orientation. The regular nanomaterials are generally presented in the form of arrays,such as nanorods,nanopillars,nanofibers,nanospheres,and core-shell structure,which have the advantages of high order structure,uniform size,and uniform distribution of nanostructures.The preparation method of the nanomaterial is mainly classified into a physical method( physical pulverization method and physical coagulation method) and a chemical method( precipitation method,sol-gel method,template synthesis method,self-assembly method) according to the preparation means. The size of the nanomaterials produced by the template synthesis method can be precisely controlled,and the template can be reused in a large amount. Therefore,the template synthesis method is often used to prepare regular nanomaterials. In recent years,flexible sensors,nano-generators,supercapacitors,and biomedical detection devices,which are prepared by using nano-array as sensitive components,have attracted much attention due to their high sensitivity,high precision,and miniaturization.In this paper,the preparation methods of porous anodized aluminum oxide( AAO) template and polymer nano-array film are systematically summarized. The advantages,disadvantages and applications of the polymer nano-array film preparation method are summarized. The existing problems and application prospects of polymer nano-array film are also discussed,which provides a reference for the preparation and application of AAO template and polymer nano-array.
引文
1 Masuda H,Fukuda K.Science,1995,268(5216),1466.
    2 Masuda H,Hasegwa F,Ono S.Cheminform,1997,28(40),L127.
    3 Schwirn K,Lee W,Hillebrand R,et al.ACS Nano,2008,2,302.
    4 Xu Y F,Liu H,Li X J,et al.Materials Letters,2015,151,79.
    5 Xu Y,Li X,Liu H,et al.Journal of Nanomaterials,2016,2016,1.
    6 Kurowska E,Brzózka A,Jarosz M,et al.Electrochimica Acta,2013,104(8),439.
    7 Li Z Y,Leung C,Gao F,et al.Sensors,2015,15(9),22473.
    8 Lee S,Hinchet R,Lee Y,et al.Advanced Functional Materials,2014,24(8),1163.
    9 Wang X,Ma X,Church J,et al.Materials Letters,2017,192,107.
    10 Chang C W,Cheng M H,Ko H W,et al.Soft Matter,2017,14(1),35.
    11 Ko H W,Higuchi T,Chang C W,et al.Soft Matter,2017,13(32),5428.
    12 Tarnacka M,Madejczyk O,Kaminski K,et al.Macromolecules,2017,50(13),5188.
    13 Kim Y,Mun J,Yu G,et al.Macromolecular Research,2017,25,656.
    14 Lizundia E,Sáenz-Pérez M,Patrocinio D,et al.Materials Science & Engineering C,2017,75,229.
    15 Pang C,Lee G Y,Kim T I,et al.Nature Materials,2012,11,795.
    16 Chen X,Shao J,Li X,et al.IEEE Transactions on Nanotechnology,2016,15,295.
    17 Chen X,Shao J,An N,et al.Journal of Materials Chemistry C,2015,3(45),11806.
    18 Ouyang H,Tian J,Sun G,et al.Advanced Materials,2017,29(40),1703456.
    19 Dudem B,Ko Y H,Leem J W,et al.ACS Applied Materials & Interfaces,2015,7(37),20520.
    20 Song W,Gan B,Jiang T,et al.ACS Nano,1936,10(8),8097.
    21 Li Z,Gao F,Gu Z,et al.Sensors & Actuators B Chemical,2017,243,1092.
    22 Li J,Liu L,Wang P,et al.Electrochimica Acta,2014,121(3),369.
    23 Mijangos C,Hernandez R,Martin J.Progress in Polymer Science,2016,54-55,148.
    24 Steinhart M,Wendorff J H,Greiner A,et al.Science,2002,296(5575),1997.
    25 Xu Y F,Liu H,Li X J.Chemical Industry and Engineering Progress,2015,34(12),4265(in Chinese).徐艳芳,刘皓,李晓久.化工进展,2015,34(12),4265.
    26 Han T,Wen P Y,Wang C Y,et al.Materials Review A:Review Papers,2010,24(1),115(in Chinese).韩婷,温培源,王晨雨,等.材料导报:综述篇,2010,24(1),115.
    27 Cao G B,Zhu W,Li J R,et al.Materials Review A:Review Papers,2014,28(4),153(in Chinese).曹国宝,朱文,李镜人,等.材料导报:综述篇,2014,28(4),153.
    28 Ma D,Li S Y.In:China National Conference on Functional Materials and Applications.Chongqing,2007,pp.2046(in Chinese).马迪,李淑英.中国功能材料及其应用学术会议.重庆,2007,pp.2046.
    29 Bao E B,Ji B W,He G M,et al.World Sci-tech R & D,2007,29(2),31(in Chinese).鲍恩波,姬保卫,何广明,等.世界科技研究与发展,2007,29(2),31.
    30 Feng Y,Zhao J W,Gao F.Semiconductor Optoelectronics,2006,27(2),108(in Chinese).冯异,赵军武,高芬.半导体光电,2006,27(2),108.
    31 Kim E,Xia Y,Whitesides G M.Nature,1995,376(6541),581.
    32 Liu H,Zhu L L,Xu Y F,et al.Journal of Nano Research,2017,45,84.
    33 Hatice D,Antonis G,George F,et al.Macromolecules,2009,42(8),2881.
    34 Grimm S,Giesa R,Sklarek K,et al.Nano Letters,2008,8(7),1954.
    35 Chang Y.Anodic aluminum oxide with large pore interval and its double-layer structure:Research and application.Ph.D.Thesis,South China University and Technology,China,2013(in Chinese).常毅.大孔间距阳极氧化铝及其双层结构的研究与应用.博士学位论文,华南理工大学,2013.
    36 Sun C,Luo J,Wu L,et al.ACS Applied Materials & Interfaces,2010,2(5),1299.
    37 Qin X F,Zhang J Q,Meng X J,et al.Applied Surface Science,2015,328,459.
    38 Zaraska L,JaskuB M,Sulka G D.Materials Letters,2016,171,315.
    39 Rahman M M,Marsal L F,Pallarès J,et al.ACS Applied Materials & Interfaces,2013,5(24),13375.
    40 Li J,Li C,Cheng C,et al.ACS Applied Materials & Interfaces,2012,4(10),5678.
    41 Yamauchi Y,Nagaura T,Ishikawa A,et al.Journal of the American Chemical Society,2008,130(31),10165.
    42 Jin S L,Gu G H,Kim H,et al.Chemistry of Materials,2001,13(7),2387.
    43 Han X,Maiz J,Mijangos C,et al.Nanotechnology,2014,25(20),205302.
    44 Blaszczyklezak I,Hernández M,Mijangos C.Macromolecules,2013,46(12),4995.
    45 Steinhart M,Senz S,Wehrspohn R B,et al.Macromolecules,2003,36(10),3646.
    46 Martin J,Campoy-Quiles M,Nogales A,et al.Soft Matter,2014,10(18),3335.
    47 Martin J,Martin-Gonzalez M.Nanoscale,2012,4(18),5608.
    48 Guan Y,Liu G,Ding G,et al.Macromolecules,2015,48(8),2526.
    49 Zhang M,Dobriyal P,Chen J T,et al.Nano Letters,2006,6(5),1075.
    50 Xiang H,Shin K,Kim T,et al.Macromolecules,2004,37(15),5660.
    51 Maiz J,Zhao W,Yu G,et al.Polymer,2014,55(16),4057.
    52 Casas M T,Michell R M,Blaszczyk-Lezak I,et al.Polymer,2015,70,282.
    53 Blaszczyk-Lezak I.Express Polymer Letters,2016,10(3),259.
    54 Martin J,Hernandez-Velez M,de Abril O,et al.European Polymer Journal,2012,48(4),712.
    55 Martin J,Martin-Gonzalez M,del Campo A,et al.Nanotechnology,2012,23(38),385305.
    56 Askar S,Wei T,Tan A W,et al.Journal of Chemical Physics,2017,146(20),203323.
    57 Zhang L,Jiang B,Weng C,et al.Zhongnan Daxue Xuebao,2017,48(4),952.
    58 Guo H,Yang C,Li X,et al.Nanoscience & Nanotechnology Letters,2017,9(12),2112.
    59 Sanz B,Blaszczyklezak I,Mijangos C,et al.Langmuir the ACS Journal of Surfaces & Colloids,2016,32(31),7860.
    60 Feng X,Jin Z.Macromolecules,2009,42(3),569.
    61 Pasquali M,Liang J,Shivkumar S.Nanotechnology,2011,22(37),375605.
    62 Martin J,Mijangos C.Langmuir the ACS Journal of Surfaces & Colloids,2009,25(2),1181.
    63 Martin J,Vazquez M,Hernandez-Velez M,et al.Nanotechnology,2008,19(17),175304.
    64 Martin J,Vazquez M,Hernandez-Velez M,et al.Journal of Nanoscience & Nanotechnology,2009,9(10),5898.
    65 Jin S,Lee Y,Jeon S M,et al.Journal of Materials Chemistry,2012,22(44),23368.
    66 Schlitt S,Greiner A,Wendorff J H.Macromolecules,2008,41(9),3228.
    67 Costa N,Li P,Xu Y,et al.Journal of Nanoparticle Research,2018,20(4),103.
    68 Lee C W,Wei T H,Chang C W,et al.Macromol Rapid Commun,2012,33(16),1381.
    69 Ko H W,Chi M H,Chang C W,et al.Macromol Rapid Commun,2015,36(5),439.
    70 Ko H W,Chi M H,Chang C W,et al.ACS Macro Letters,2015,4(7),717.
    71 Wei T H,Chi M H,Tsai C C,et al.Langmuir the ACS Journal of Surfaces & Colloids,2013,29(32),9972.
    72 Chen J T,Wei T H,Chang C W,et al.Macromolecules,2014,47(15),5227.
    73 Chi M H,Kao Y H,Wei T H,et al.Nanoscale,2014,6(3),1340.
    74 Choi Y S,Jing Q,Datta A,et al.Energy & Environmental Science,2017,10(10),2180.
    75 Sanz B,Ballard N,ángel Marcos-Fernández,et al.Polymer,2018,140,131.
    76 Tarnacka M,Dzienia A,Maksym P,et al.Macromolecules,2018,51(12),4588.
    77 Tseng K P,Tsai Y T,Shyue J J,et al.Chemical Physics Letters,2017,683,43.
    78 Chu C W,Higaki Y,Cheng C H,et al.Polymer Chemistry,2017,8(15),2309.
    79 Jo H,Haberkorn N,Pan J A,et al.Langmuir the ACS Journal of Surfaces & Colloids,2016,32(25),6437.
    80 Salunke R S,Kasar C K,Bangar M A,et al.Journal of Materials Science Materials in Electronics,2017,28(19),14672.
    81 Back J W,Lee S,Hwang C R,et al.Macromolecular Research,2011,19(1),33.
    82 Jang J,Oh J H.Chemical Communications,2004,10(7),882.
    83 Chen D,Zhao W,Russell T P.ACS Nano,2012,6(2),1479.
    84 Nakagawa M,Nakaya A,Hoshikawa Y,et al.ACS Applied Materials & Interfaces,2016,8(44),30628.
    85 Kim S,Hyun S,Lee J,et al.Advanced Functional Materials,2018,28(23),1.
    86 Palacios R,Nassiopoulou A,Sailor M,et al.Physica Status Solidi C Current Topics in Solid State Physics,2009,6,1584.
    87 Lee W,Ji R,Goesele U,et al.Nature Materials,2006,5(9),741.
    88 Xue L J,Han Y C.Progress in Polymer Science,2011,36(2),269.
    89 Li J,Liu L,Wang P,et al.Electrochimica Acta,2014,121(3),369.
    90 Wang Z,Liu S,Wu P,et al.Analytical Chemistry,2009,81(4),1638.
    91 Song W,Gan B,Jiang T,et al.ACS Nano,2016,10(8),8097.
    92 Cui M,Wang F,Miao Z,et al.RSC Advances,2015,5(80),65627.
    93 Pannopard P,Boonyuen C,Warakulwit C,et al.Carbon,2015,94(5),836.
    94 Yang C S,Mahmood A,Kim B,et al.2d Materials,2016,3(1),011007.
    95 Ahn Y K,Park J,Shin D,et al.Journal of Materials Chemistry A,2015,3(20),10715.
    96 Wei Q,Fu Y,Zhang G,et al.Nano Energy,201,55,234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700