用户名: 密码: 验证码:
基于数字岩心的孔隙尺度砂砾岩水敏微观机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microscopic mechanism of water sensitivity of pore-scale sandy conglomerate based on digital core
  • 作者:李俊键 ; 成宝洋 ; 刘仁静 ; 孟凡乐 ; 刘洋 ; 高亚军 ; 马康 ; 姜汉桥
  • 英文作者:Li Junjian;Cheng Baoyang;Liu Renjing;Meng Fanle;Liu Yang;Gao Yajun;Ma Kang;Jiang Hanqiao;State Key Laboratory of Petroleum Resources and Prospecting;Sinopec International Petroleum Exploration and Production Corporation;
  • 关键词:水敏 ; CT原位扫描 ; QEMSCAN ; 孔隙尺度 ; 岩心重构 ; 不均匀伤害 ; 有效渗透率
  • 英文关键词:water-sensitive;;CT in-situ scanning;;QEMSCAN;;pore scale;;core refactoring;;uneven damage;;effective permeability
  • 中文刊名:石油学报
  • 英文刊名:Acta Petrolei Sinica
  • 机构:油气资源与探测国家重点实验室;中国石化集团国际石油勘探开发有限公司;
  • 出版日期:2019-05-15
  • 出版单位:石油学报
  • 年:2019
  • 期:05
  • 基金:国家科技重大专项(2017ZX05009-005)资助
  • 语种:中文;
  • 页:90-99
  • 页数:10
  • CN:11-2128/TE
  • ISSN:0253-2697
  • 分类号:TE31
摘要
新疆莫北油田是典型的砂砾岩油田,矿场实践表明油藏存在严重的水敏伤害问题。为防止水敏伤害后储层物性变差,针对该地区砂砾岩水敏损伤机理展开研究,提出了一种基于CT扫描实验进行三维矿物分布重构研究水敏损伤机理的方法。通过对比QEMSCAN确定的矿物分布图和Micro-CT扫描岩心切片的灰度图,建立CT扫描灰度值与不同矿物组分的对应关系。然后对CT扫描的整块岩心矿物组分进行识别,并利用X射线衍射分析的矿物含量对识别结果进行验证。通过对比水敏前后重构的三维数字岩心,对水敏损伤机理进行了分析,利用重构的数字岩心并基于侵入-逾渗理论模拟了两相渗流过程,获得了伤害前后相渗曲线的变化特征。结果表明,造成水敏损伤的主要原因是非晶体矿物(黏土)的膨胀、分散和运移,在这一过程中大孔喉被分割成小孔喉,且喉道的损伤程度大于孔隙的损伤程度,进而导致了渗透率的下降。通过相渗曲线分析可知,发生水敏后,不仅绝对渗透率降低,相对渗透率亦降低,水敏对于油水两相的总有效渗透率的伤害是绝对渗透率伤害的1.6~2.0倍。
        Xinjiang Mobei oilfield is a typical sandy conglomerate oil field.Field practice demonstrates that the reservoir faces serious water sensitive damage.To prevent the deterioration of reservoir properties after water sensitive damage,a study is conducted on the water sensitive damage mechanism of regional sandy conglomerate,and a method based on CT scanning experiment is proposed to investigate the mechanism of water sensitive damage by reconstructing 3D mineral distribution.By comparing the mineral distribution image determined by QEMSCAN with the gray-scale image of core slice scanned by Micro-CT,the corresponding relationship between the gray value of CT scanning and different mineral components is established.Then the whole core mineral components of the CT scanning are identified,and the identification results are verified through the X-ray diffraction analysis of mineral content.Through a comparison of the reconstructed 3D digital cores prior and posterior to water sensitivity,this paper analyzes the water sensitive damage mechanism.On this basis,this study simulates process of the two phases flow in porous media based on the intrusionpercolation theory,so as to obtain the variation characteristics of the relative permeability curves prior and posterior to damage.The results show that the main cause of water sensitive damage is the expansion,dispersion and migration of amorphous minerals(clay).In this process,the big pore-throats are divided into small pore-throats,and the damage to the throats is greater than that to the pores,thus leading to a decline in permeability.It can be known that after the occurrence of water sensitivity,not only the absolute permeability is decreased,but also the relative permeability is decreased by analysing the relative permeability curves.The water sensitivity is about 1.6-2.0 times the absolute permeability damage to the total effective permeability of oil-water two phases.
引文
[1]苟燕,高树生,彭永灿,等.新疆莫北油田水驱油机理与采出程度分析[J].大庆石油地质与开发,2013,32(3):74-78.GOU Yan,GAO Shusheng,PENG Yongcan,et al.Analyses of the mechanism and interval recovery of waterflooded Mobei oilfield in Xinjiang[J].Petroleum Geology&Oilfield Development in Daqing,2013,32(3):74-78.
    [2]高树生.新疆莫北油田砂砾岩储层渗流机理与油藏工程应用研究[D].北京:中国地质大学(北京),2012.GAO Shusheng.Research on seepage theory and use of petroleum reservoir engineering of sand-conglomerate reservoir formation in Mobei oilfield,Xinjiang[D].Beijing:China University of Geosciences,2012.
    [3]姜汉桥.油藏工程原理与方法[M].北京:中国石油大学出版社,2006.JIANG Hanqiao.Fundamentals and methods of reservoir engineering[M].Beijing:Press of the China University of Petroleum,2006.
    [4]JOHNSTON N,BEESON C M.Water permeability of reservoir sands[J].Transactions of the AIME,1945,160(1):43-55.
    [5]朱玉双,曲志浩,蔺方晓,等.油层受水敏伤害时水驱油渗流特征[J].石油学报,2004,25(2):59-64.ZHU Yushuang,QU Zhihao,LIN Fangxiao,et al.Seepage flow characters of oil displacement with water drive in water-sensitive formation of Mubo Yan10 reservoir[J].Acta Petrolei Sinica,2004,25(2):59-64.
    [6]韩德金,董平川,石娜.储层水敏实验及其形成机理研究[J].大庆石油地质与开发,2008,27(5):14-17.HAN Dejin,DONG Pingchuan,SHI Na.Sensitivity experiment study and its mechanism analysis of the oil reservoirs[J].Petroleum Geology&Oilfield Development in Daqing,2008,27(5):14-17.
    [7]张士奇,张美玲,曾科.利用复杂孔隙结构参数研究储层油水分布规律[J].大庆石油地质与开发,2013,32(2):71-74.ZHANG Shiqi,ZHANG Meiling,ZENG Ke.Researches on the oil-water distribution laws of the reservoirs by complex pore structure parameters[J].Petroleum Geology&Oilfield Development in Daqing,2013,32(2):71-74.
    [8]国家能源局.储层敏感性流动实验评价方法:SY/T5358-2010[S].北京:石油工业出版社,2010.National Energy Board.Formation damage evaluation by flow test:SY/T5358-2010[S].Beijing:Petroleum Industry Press,2010.
    [9]廖纪佳,唐洪明,朱筱敏,等.特低渗透砂岩储层水敏实验及损害机理研究——以鄂尔多斯盆地西峰油田延长组第8油层为例[J].石油与天然气地质,2012,33(2):321-328.LIAO Jijia,TANG Hongming,ZHU Xiaomin,et al.Water sensitivity experiment and damage mechanism of sandstone reservoirs with ultra-low permeability:a case study of the eighth oil layer in the Yanchang Formation of Xifeng oilfield,Ordos Basin[J].Oil&Gas Geology,2012,33(2):321-328.
    [10]杜庆龙.长期注水开发砂岩油田储层渗透率变化规律及微观机理[J].石油学报,2016,37(9):1159-1164.DU Qinglong.Variation law and microscopic mechanism of permeability in sandstone reservoir during long-term water flooding development[J].Acta Petrolei Sinica,2016,37(9):1159-1164.
    [11]祝琦.利用核磁共振研究致密砂岩油气藏水敏性伤害[J].石油化工应用,2014,33(5):25-27.ZHU Qi.An application study on water sensitivity damage of tight sandstone reservoir by nuclear magnetic resonance(NMR)[J].Petrochemical Industry Application,2014,33(5):25-27.
    [12]冷振鹏,马德胜,吕伟峰,等.CT扫描技术在水敏伤害评价中的应用[J].特种油气藏,2015,22(5):100-103.LENG Zhenpeng,MA Desheng,LV Weifeng,et al.Application of CT scanning technology in water-sensitivity damage evaluation[J].Special Oil&Gas Reservoirs,2015,22(5):100-103.
    [13]Al-YASERI A Z,LEBEDEV M,VOGT S J,et al.Pore-scale analysis of formation damage in Bentheimer sandstone with in-situ NMR and micro-computed tomography experiments[J].Journal of Petroleum Science and Engineering,2015,129:48-57.
    [14]FANG Wenchao,JIANG Hanqiao,LI Jie,et al.A new experimental methodology to investigate formation damage in claybearing reservoirs[J].Journal of Petroleum Science and Engineering,2016,143:226-234.
    [15]MA Kang,JIANG Hanqiao,LI Junjian,et al.Experimental study on the micro alkali sensitivity damage mechanism in low-permeability reservoirs using QEMSCAN[J].Journal of Natural Gas Science&Engineering,2016,36:1004-1017.
    [16]李俊键,高亚军,赵玉云,等.一种用于CT扫描的岩心夹持器:中国,2017201489476[P].2017-10-17.LI Junjian,GAO Yajun,ZHAO Yuyun,et al.A rock core holder for CT scan:CN,2017201489476[P].2017-10-17.
    [17]KHISHVAND M,AKBARABADI M,PIRI M.Micro-scale experimental investigation of the effect of flow rate on trapping in sandstone and carbonate rock samples[J].Advances in Water Resources,2016,94:379-399.
    [18]BUADES A,COLL B,MOREL J M.A non-local algorithm for image denoising[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego,CA,USA:IEEE,2005:60-65.
    [19]何延龙,蒲春生,景成,等.基于Hoshen-Kopelman算法的三维多孔介质模型中黏土矿物的构建[J].石油学报,2016,37(8):1037-1046.HE Yanlong,PU Chunsheng,JING Cheng,et al.Reconstruction of clay mineral in three-dimensional porous media model based on Hoshen-Kopelman algorithm[J].Acta Petrolei Sinica,2016,37(8):1037-1046.
    [20]?REN P E,BAKKE S.Reconstruction of Berea sandstone and pore-scale modelling of wettability effects[J].Journal of Petroleum Science and Engineering,2003,39(3/4):177-199.
    [21]姜黎明,赵强先,李兵,等.基于CT图像的孔隙结构参数提取算法改进[J].测井技术,2017,41(5):517-522.JINAG Liming,ZHAO Qiangxian,LI Bing,et al.Improvement of pore structure parameter extraction algorithm based on CTimages[J].Well Logging Technology,2017,41(5):517-522.
    [22]DONG Hu,BLUNT M J.Pore-network extraction from microcomputerized-tomography images[J].Physical Review E,2009,80(3):036307.
    [23]代全齐,罗群,张晨,等.基于核磁共振新参数的致密油砂岩储层孔隙结构特征——以鄂尔多斯盆地延长组7段为例[J].石油学报,2016,37(7):887-897.DAI Quanqi,LUO Qun,ZHANG Chen,et al.Pore structure characteristics of tight-oil sandstone reservoir based on a new parameter measured by NMR experiment:a case study of seventh Member in Yanchang Formation,Ordos Basin[J].Acta Petrolei Sinica,2016,37(7):887-897.
    [24]VALVATNE P H,BLUNT M J.Predictive pore-scale modeling of two-phase flow in mixed wet media[J].Water Resources Research,2004,40(7):W074006.
    [25]BLUNT M J.Physically-based network modeling of multiphase flow in intermediate-wet porous media[J].Journal of Petroleum Science and Engineering,1998,20(3/4):117-125.
    [26]李潮流,胡法龙,侯雨庭,等.基于有限元的致密砂岩储层电阻率特性模拟[J].石油学报,2016,37(6):787-795.LI Chaoliu,HU Falong,HOU Yuting,et al.Simulation of electrical resistivity characteristics of tight sands reservoir by FEM[J].Acta Petrolei Sinica,2016,37(6):787-795.
    [27]刘兴业,陈小宏,李景叶,等.基于核贝叶斯判别法的储层物性参数预测[J].石油学报,2016,37(7):878-886.LIU Xingye,CHEN Xiaohong,LI Jingye,et al.Reservoir physical property prediction based on kernel-Bayes discriminant method[J].Acta Petrolei Sinica,2016,37(7):878-886.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700