用户名: 密码: 验证码:
煤层气低产井高压氮气闷井增产改造技术与应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study and application of stimulation technology for low production CBM well through high pressure N_2 Injection-soak
  • 作者:曹运兴 ; 石玢 ; 周丹 ; 吴海明 ; 刘同吉 ; 田林 ; 曹永恒 ; 贾猛
  • 英文作者:CAO Yunxing;SHI Bin;ZHOU Dan;WU Haiming;LIU Tongji;TIAN Lin;CAO Yongheng;JIA Meng;Gas Geology and Engineering Research Center,Henan Polytechnic University;Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region,Henan Province,Henan Polytechnic University;Henan Arks New Energy Company Limited;Hebei Huabei Petroleum Tian Cheng Industrial Group Co.Ltd.;Shanxi Lu'an Mining Group Ltd.;
  • 关键词:煤层气 ; 低产井 ; 低压低渗 ; 氮气闷井 ; 增产改造 ; 潞安矿区
  • 英文关键词:coalbed methane;;low production wells;;low pressure low permeability;;N_2 injection-soak;;ECBM;;Lu'an mining area
  • 中文刊名:煤炭学报
  • 英文刊名:Journal of China Coal Society
  • 机构:河南理工大学煤层气/瓦斯地质工程研究中心;中原经济区煤层(页岩)气河南省协同创新中心;河南方舟新能源股份有限公司;河北华北石油天成实业集团有限公司;山西潞安矿业(集团)有限责任公司;
  • 出版日期:2019-08-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:08
  • 基金:山西省科技重大专项资助项目(20111101002)
  • 语种:中文;
  • 页:286-295
  • 页数:10
  • CN:11-2190/TD
  • ISSN:0253-9993
  • 分类号:TD712
摘要
我国煤层气储层地质条件复杂,低产煤层气井普遍存在。低产井增产改造是中国煤层气行业迫切需要破解的重大理论和瓶颈技术难题。本文所研究的低产井是指投产后经过一个时期排采生产,储层水和煤层气已经大量产出,气产量较低的生产井。这类低产井的一个重要储层属性是双低压特征,即低水压和低气压。针对这类双低压低产井,研究开发了高压氮气闷井储层保护型增产改造技术,并在潞安矿区余吾井田进行了工程试验,获得了预期增产效果。余吾井田山西组3号煤层区域上为低压低渗储层,煤层气井的产量普遍偏低。两口试验井LA-011和LA-016于2008年投产,经过4 a的排采生产,平均日产量只有31 m~3/d和20 m~3/d;两井各进行过一次水力压裂二次改造,增产效果仍不明显。两口井试验前的储层压力梯度只有1.0 kPa/m左右,具有典型的低压低产特征。高压氮气闷井增产改造试验于2012年10月进行,分别泵注高压氮气34 800 m~3和44 960 m~3,泵注结束后关井闷压92 h和112 h,在井口压力降低到1.0 MPa以下时开井排采。在高压氮气闷井期间,实时监测了试验井周边邻井的套压变化,分析高压氮气在煤层中的运移方向,试验结束后进行了1~3 a的排采生产。结果表明:①在高压氮气泵注阶段,位于不同方向邻井的套压不同程度升高,这一方面表明高压氮气具有区域性面状穿透扩展和造缝现象,并清晰指示了高压氮气在煤层中的造缝穿透运移方向,而且高压氮气新生裂缝扩展方向不再受控于原始的区域地应力场方向,主要与排采后均化的局部地应力场有关。②试验前后同一时间段的产量对比表明,氮气闷井改造具有"单井改造,多井增产"的区域性增产效果:即2井(LA-011和LA-016)改造,受到影响的5口井(LA-011,LA-016,LA-013,LA-014和LA-015)同时增产。③增产效果显著,两口试验井日产气增加1.2~8.9倍,3口邻井日产气增加1.4~3.7倍。高压氮气闷井技术是低压低产井改造增产的有效技术,对煤层气低压低产井增产改造具有推广应用价值。
        In China,coal reservoirs are complex and under-performance CBM wells are widely distributed.To develop a novel theory and technology for stimulating these wells again for increasing gas rate is very important for CBM enterprises and the industry.After a long time water drainage and gas production,the reservoir is characterized as low gas pressure and low water pressure,even in dry condition.For re-stimulating these low productive CBM wells meanwhile protecting the sensitive low pressure or dry reservoir,a nitrogen ECBM technology named nitrogen injection-soak(NIS) was developed and tested in two CBM wells located in Yuwu coal mine of Luan mining area,Shanxi Province,China,and some desired results were obtained.The objective reservoir coal No.3 has low pressure and low permeability,and the gas production is generally low in the study area.The two experimental wells LA-011 and LA-016 started pump and production in 2008.Four years production result shown that the average gas rate was only 31 m~3/d and 20 m~3/d.The two wells have been re-stimulated with hydraulic fracturing in 2010,but no desired result reached.The reservoir pressure gradient of the two wells before the current experiment was only 1.0 kPa/m,which were two typical low pressure and low productivity wells.The stimulation trial of NIS was carried out in October 2012.The nitrogen amounted to 34 800 m~3 and 44 960 m~3 were pumped into LA-011 and LA-016,and shut-in times was 92 h and 112 h respectively,then the wells were opened for drainage when the wellhead pressure was lower than 1.0 MPa.During the period of NIS,the casing pressure of adjacent CBM wells was measured for monitoring the nitrogen migration direction in the coal seam.After the NIS experiment,the wells were continually in production for 1 to 3 years.The experiment result shown that:① The casing pressure increase of adjacent wells during injection stage indicates that NIS has a regional stimulation effectiveness,which clearly indicates the migration direction of high pressure nitrogen.The influenced area is mainly controlled by current in-situ stress that highly influenced by water drainage and gas production.② The NIS has regional production improvement,that is "one well stimulated,multiple wells improved",or 2 wells stimulated and 5 wells improved.③ The gas rate of the 2 NIS wells increased 1.2-8.9 times,as well as 3 adjacent wells increased 1.4-3.7 times.It is concluded that N_2 ECBM is an advanced technology for improving gas rate in under-performance CBM wells,and can be applied in other CBM wells in China.
引文
[1] 门相勇,韩征,宫厚健,等.新形势下中国煤层气勘探开发面临的挑战与机遇[J].天然气工业,2018,38(9):10-16.MEN Xiangyong,HAN Zheng,GONG Houjian,et al.Challenges and opportunities of CBM exploration and development in China under new situations[J].Natural Gas Industry,2018,38(9):10-16.
    [2] 叶建平,陆小霞.我国煤层气产业发展现状和技术进展[J].煤炭科学技术,2016,44(1):24-28,46.YE Jianping,LU Xiaoxia.Development status and technical progress of China coalbed methane industry[J].Coal Science and Technology,2016,44(1):24-46,46.
    [3] 吴建光,孙茂远,冯三利,等.国家级煤层气示范工程建设的启示—沁水盆地南部煤层气开发利用高技术产业化示范工程综述[J].天然气工业,2011,31(5):9-15,113.WU Jianguang,SUN Maoyuan,FENG Sanli,et al.Good lessons from the state-level demonstration project of coalbed methane development:An overview of such high-tech and commercial project in the southern Qinshui Basin[J].Natural Gas Industry,2011,31(5):9-15,113.
    [4] 赵贤正,朱庆忠,孙粉锦,等.沁水盆地高阶煤层气勘探开发实践与思考[J].煤炭学报,2015,40(9):2131-2136.ZHAO Xianzheng,ZHU Qingzhong,SUN Fenjin,et al.Practice of coalbed methane exploration and development in Qinshui basin[J].Journal of China Coal Society,2015,40(9):2131-2136.
    [5] 曹运兴,石玢,田林,等.大倾角厚煤层煤层气开发水平井方位优化和实践——以新疆阜康矿区为例[J].煤田地质与勘探,2018,46(2):90-96.CAO Yunxing,SHI Bin,TIAN Lin,et al.Optimization and practice of horizontal well azimuth in thick and high dip-angle coalbed in Fukang mining area[J].Coal Geology & Exploration,2018,46(2):90-96.
    [6] 张群,葛春贵,李伟,等.碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J].煤炭学报,2018,43(1):150-159.ZHANG Qun,GE Chungui,LI Wei,et al.A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata-in horizontal well and staged hydraulic fracture[J].Journal of China Coal Society,2018,43(1):150-159.
    [7] 赵欣,姜波,张尚锟,等.鄂尔多斯盆地东缘三区块煤层气井产能主控因素及开发策略[J].石油学报,2017,38(11):1310-1319.ZHAO Xin,JIANG Bo,ZHANG Shangkun,et al.Main controlling factors of productivity and development strategy of CBM wells in Block 3 on the eastern margin of Ordos Basin[J].Acta Prtrolei Sinica,2017,38(11):1310-1319.
    [8] 李登华,高煖,刘卓亚,等.中美煤层气资源分布特征和开发现状对比及启示[J].煤炭科学技术,2018,46(1):252-261.LI Denghua,GAO Xuan,LIU Zhuoya,et al.Comparison and revelation of coalbed methane resources distribution characteristics and development status between China and America[J].Coal Science and Technology,2018,46(1):252-261.
    [9] 穆福元,仲伟志,赵先良,等.中国煤层气产业发展战略思考[J].天然气工业,2015,35(6):110-116.MU Fuyuan,ZHONG Weizhi,ZHAO Xianliang,et al.Strategies for the development of CBM gas industry in China[J].Natural Gas Industry,2015,35(6):110-116.
    [10] 秦勇,袁亮,胡千庭,等.我国煤层气勘探与开发技术现状及发展方向[J].煤炭科学技术,2012,40(10):1-6.QIN Yong,YUAN Liang,HU Qianting,et al..Status and Development orientation of coalbed methane exploration and development technology in China[J].Coal Science and Technology,2012,40(10):1-6.
    [11] 孟召平,田永东,李国富.煤层气开发地质学理论与方法[M].北京:科学出版社,2010.
    [12] 张义,鲜保安,孙粉锦,等.煤层气低产井低产原因及增产改造技术[J].天然气工业,2010,30(6):55-59,128.ZHANG Yi,XIAN Baoan,SUN Fengjin,et al.Reason analysis and stimulation measures of low coalbed methane gas production wells[J].Natural Gas Industry,2010,30(6):55-59,128.
    [13] 程乔,胡宝林,徐宏杰,等.沁水盆地南部煤层气井排采伤害判别模式[J].煤炭学报,2014,39(9):1879-1885.CHENG Qiao,HU Baolin,XU Hongjie,et al.Discrimination model on damage mechanism in the extraction process of CBM wells in Southern Qinshui Basin[J].Journal of China Coal Society,2014,39(9):1879-1885.
    [14] 张聪,李梦溪,王立龙,等.沁水盆地南部樊庄区块煤层气井增产措施与实践[J].天然气工业,2011,31(11):26-29,120.ZHANG Cong,LI Mengxi,WANG Lilong,et al.EOR measures for CBM gas wells and their practices in the Fangzhuang Block,southern Qinshui Basin[J].Natural Gas Industry,2011,31(11):26-29,120.
    [15] 张建国,刘忠,姚红星,等.沁水煤层气田郑庄区块二次压裂增产技术研究[J].煤炭科学技术,2016,44(5):59-63.ZHANG Jianguo,LIU Zhong,YAO Hongxing,et al.Study on production increased technology with secondary hydraulic fracturing in Zhengzhuang Block of Qinshui Coalbed Methane Field[J].Coal Science and Technology,2016,44(5):59-63.
    [16] LIU Shimin,HARPALANI S.Permeability prediction of coalbed methane reservoirs during primary depletion[J].International Journal of Coal Geology,2013,113:1-10.
    [17] 倪小明,张崇崇,王延斌,等.气水两相流阶段煤基质收缩量预测方法[J].煤炭学报,2014,39(S1):174-178.NI Xiaoming,ZHANG Chongchong,WANG Yanbin,et al.Prediction of coal matrix shrinkage in gas-water two-phase flow stage[J].Journal of China Coal Society,2014,39(S1):174-178.
    [18] HOCH O.The dry coal anomaly-The Horseshoe Canyon Formation of Alberta,Canada[A].Paper SPE95872,presented at the,2005 SPE Annual Technical Conference & Exhibition[C].Dallas,Texas,2005:1-14.
    [19] National Energy Board of Canada.Overview and economics of Horseshoe Canyon coalbed methane development[R].2007.
    [20] REEVES S R,OUDINOT A Y,ERICKSON D.The Tiffany Unit N2-ECBM polit:A reservoir modeling study[R].U.S.DOE:DE-FC26-00NT40924,2004.
    [21] REEVES S R,OUDINOT A Y.The Tiffany Unit N2-ECBM polit-A reservoir and economic anaiysis[A].Paper,0523,presented at the,2005 International Coalbed Methane Symposium[C].Tuscaloosa,Alabama,2005:16-20.
    [22] ANDREW B,WILLEM L B,CRISTINA P.Coalbed methane resources and reservoir characteristics from the Alberta Plains,Canada[J].International Journal of Coal Geology,2006,65(1-2):93-113.
    [23] National Energy Board of Canada.Energy market assessment short-term Canadian natural gas deliverability,2016-2018[R].2016.
    [24] 曹运兴,柴学周,刘同吉,等.潞安矿区山西组3号煤储层低压特征及控制因素研究[J].天然气地球科学,2016,27(11):2077-2085.CAO Yunxing,CHAI Xuezhou,LIU Tongji,et al.A research on low reservoir pressure of coal No.3 of Shanxi Formation in Lu’an mining area,Qinshui Basin[J].Natural Gas Geoscience,2016,27(11):2077-2085.
    [25] TIAN Lin,CAO Yunxing,CHAI Xuezhou,et al.Best practice for the determination of low-pressure/permeability coalbed methane reservoirs,Yuwu Coal Mine,Lu’an mining area,China[J].Fuel,2015,160:100-107.
    [26] 曹运兴,柴学周,倪小明,等.潞安矿区煤层气井储层保护压裂增产开发工艺技术研究[R].焦作:河南理工大学,2012:9-29.CAO Yunxing,CHAI Xuezhou,NI Xiaoming,et al.Development and application of new stimulation technology for reservoir protection in Luan Coal Mining Area[R].Jiaozuo:Henan Polytechnic University,2012:9-29.
    [27] 杨宏民,冯朝阳,陈立伟.煤层注氮模拟实验中的置换-驱替效应及其转化机制分析[J].煤炭学报,2016,41(9):2246-2250.YANG Hongmin,FENG Zhaoyang,CHEN Liwei.Analysis of replacement-displacement effect and its change mechanism in simulation experiment of nitrogen injection into coal seam[J].Journal of China Coal Society,2016,41(9):2246-2250.
    [28] 倪小明,贾炳,曹运兴.煤层气井水力压裂伴注氮气提高采收率的研究[J].矿业安全与环保,2012,39(1):1-7.NI Xiaoming,JIA Bing,CAO Yunxing.Study on improving coalbed gas recovery rate by hydraulic fracturing and nitrogen injection of borehole[J].Mining Safety & Environmental Protection,2012,39(1):1-7.
    [29] 倪小明,王延斌,李全中.煤层气直井储层改造技术与应用[M].北京:化学工业出版社,2017.
    [30] 罗培培.N2闷压增透实验研究-以潞安矿区为例[D].徐州:中国矿业大学,2014:56-63.LUO Peipei.Study on permeability improvement through high-pressure n2 injection-Taking Lu’an Mining Area as example[D].Xuzhou:China University of Mining Technology,2014:56-63.
    [31] 石玢.潞安矿区煤层气井N2驱替增产技术研究[D].焦作:河南理工大学,2018:29-34.SHI Bin.Study on N2 displacement of CBM well in Lu’an Ming Area[D].Jiaozuo:Henan Polytechnic University,2018:29-34.
    [32] ANNE Y O,KARINE C S,SCOTT R R.Gas injection and breakthrough trends as observed in sequestration pilot projects and field demonstrations[A].Paper,0417,presented at the,2007,International Coalbed Methane Symposium[C].Tuscaloosa,Alabama,2007:1-13.
    [33] LIU Shimin,HARPALANI S.Evaluation of in-situ stress changes with gas depletion of coalbed methane reservoirs[J].Journal of Geophysical Research-Solid Earth,2014,119(8):6263-6276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700