用户名: 密码: 验证码:
磷块岩中磷灰石铈异常与地球大气氧演化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Indication of the Ce anomaly of apatite in phosphorites to the evolution of oxygen in the Earth's atmosphere
  • 作者:娄方炬 ; 顾尚义
  • 英文作者:LOU Fang-ju;GU Shang-yi;College of Resources and Environmental Engineering, Guizhou University;
  • 关键词:磷块岩 ; 磷灰石 ; 大气氧演化 ; 铈异常
  • 英文关键词:phosphorite;;apatite;;the atmospheric oxygen evolution;;the Ce anomaly
  • 中文刊名:矿物学报
  • 英文刊名:Acta Mineralogica Sinica
  • 机构:贵州大学资源与环境工程学院;
  • 出版日期:2019-05-21 10:35
  • 出版单位:矿物学报
  • 年:2019
  • 期:04
  • 基金:贵州省国土资源厅重大基础性、公益性地质项目(编号:2016-9-1)
  • 语种:中文;
  • 页:70-77
  • 页数:8
  • CN:52-1045/P
  • ISSN:1000-4734
  • 分类号:P595;P311.4
摘要
新元古代以来,地球大气氧演化经历了2个阶段,但对2个演化阶段的过程争论较大。海相沉积磷块岩中磷灰石稀土元素配分模式表明其可以反映海水稀土组成,其中氧化还原敏感元素铈的异常受海水含量控制,因此可以利用不同地质时代磷块岩中磷灰石铈异常的变化推测大气氧浓度演化。通过收集自陡山沱期到第四纪(570Ma-1Ma)总共9个地质年代13个不同地点220个磷块岩样品的已公布数据,以及贵州织金磷矿中磷灰石钻孔的18个样品稀土元素分析结果。为保证样品反映原始海水的铈异常特征,排除了因中稀土富集而影响铈异常的样品。结果表明,震旦纪陡山沱期到寒武纪样品δCe平均值从0.74减小到0.36,奥陶纪又升高到0.87,表明寒武纪大气氧浓度可能要高于前寒武纪及之后的奥陶纪;泥盆纪样品δCe平均值为0.36,石炭纪与二叠纪样品的δCe达最低值,分别为0.16和0.21,说明从泥盆纪开始的整个晚古生代全球大气氧含量可能达到甚至超过现代水平;从三叠纪开始到第四纪,样品δCe总体保持较低值,平均值为0.24~0.54,表明大气氧含量基本保持现代水平。寒武纪与泥盆纪大气氧含量升高与寒武纪生命大爆发和泥盆纪木本植物的出现吻合,也与海洋碳酸盐岩铈异常及生物地球化学模型研究结果一致。综合分析认为,磷块岩中磷灰石与碳酸盐岩一样可通过铈异常指示大气氧演化;地球大气氧的演化既不是单向也不是简单的两阶段过程,而是复杂的不断波动的过程。
        Since the Neoproterozoic Era, the evolution of oxygen in the Earth's atmosphere has gone through two stages.However, the process of the two stages evolution is controversially debated. The REE distribution patterns of apatites in the marine sedimentary phosphorites show that they can reflect the REE composition of seawater at the time of apatite precipitation. The REDOX sensitive Ce anomaly of the seawater is controlled by oxygen concentrations in the seawater.Therefore, the evolution of atmospheric oxygen levels can be inferred from the variation of Ce anomalies of apatites in phosphorites of different geological ages. A database has been compiled based on published data of a total of 220 apatite samples from phosphorites of 9 geological periods varying from Ediacaran to Quarternary( 570 Ma to 1 Ma) in 13 different locations and newly acquired REE contents of apatites from 18 samples of drill cores of the early Cambrian phosphorites in the Zhijin County, Guizhou Province, to assess the atmospheric oxygen evolution. In order to ensure pristine seawater Ce anomaly signals, samples that preferentially enriched with the MREE are not included in the database because the Ce anomaly is influenced by the MREE enrichment. The results show that average δCe values of apatites in phosphorites are decreased from 0.74 for samples of the Ediacaran Doushantuo Period to 0.36 for samples of the early Cambrian period, then are increased to 0.87 for samples of the Ordovician Period, indicating that the atmospheric oxygen concentration in the Cambrian Period may be higher than those in the Precambrian and Late Ordovician periods. The average δCe values of apatites in phosphorites of the Devonian, Carboniferous, and Permian samples are 0.36, 0.16, and0.21, respectively. It indicates that the global atmospheric oxygen contents of the late Paleozoic Era from the beginning of Devonian period may reach or even exceed the modern atmospheric oxygen level. The average δCe values of apatites in phosphorites of the Mesozoic and Cenozoic eras(from Triassic to quaternary) are generally in relatively low levels varying from 0.24 to 0.54, indicating atmospheric oxygen contents of the Mesozoic and Cenozoic eras are basically maintained the modern atmospheric oxygen level. We found that the increased atmospheric oxygen contents in the Cambrian and Devonian periods are consistent with the occurrence of the Cambrian Explosion and appearance of Devonian arborescent land plants, and consistent with the marine carbonate Ce anomalies and biogeochemical modeling results. Based on the comprehensive analysis, we have suggested that the Ce anomalies of apatites in phosphorites, just like the Ce anomalies of carbonate rock, can indicate the atmospheric oxygen evolution. The evolution of atmospheric oxygen in the Earth during Phanerozoic is neither a one-way process nor a simple two-stage process, but a complex and constantly fluctuating process.
引文
[1] Graham J B, Aguilar N M, Dudley R, et al. Implications of the late Palaeozoic oxygen pulse for physiology and evolution[J]. Nature, 1995, 375(6527):117-120.
    [2] Scott A C, Glasspool I J. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration.[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(29):10861-10865.
    [3] Bemer R.A.,VandenBrooks J.M.,Ward P.D. Oxygen and Evolution[J]. Science, 2007, 316(5824):557-558.
    [4] Harrison J F, Kaiser A, Vandenbrooks J M. Atmospheric oxygen level and the evolution of insect body size.[J]. Proceedings Biological Sciences,2010, 277(1690):1937-1946.
    [5] Dahl T W, Hammarlund E U, Anbar A D, et al. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish.[J]. Communicative&Integrative Biology, 2011, 107(1):17911-5.
    [6] Canfield D E, Teske A. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies[J]. Nature,1996, 382(6587):127-32.
    [7] Canfield D E. The early history of atmospheric oxygen:Homage to Robert M. Garrels[J]. Annual Review of Earth&Planetary Sciences, 2005, 33(1):5.
    [8] Campbell I H, Allen C M. Formation of supercontinents linked to increases in atmospheric oxygen[J]. Nature Geoscience, 2008, 1(8):554-558.
    [9] Holland H D. Why the atmosphere became oxygenated:A proposal[J]. Geochimica et Cosmochimica Acta, 2009, 73(18):5241-5255.
    [10] Kump L R, Junium C, Arthur M A, et al. Isotopic evidence for massive oxidation of organic matter following the great oxidation event.[J]. Science,2011, 334(6063):1694-1696.
    [11] Berner R A, Beerling D J, Dudley R, et al. Phanerozoic atmospheric oxygen[J]. Annual Review of Earth&Planetary Sciences, 2003, 31(31):105-34.
    [12] Berner R A. Geocarbsulf:A combined model for Phanerozoic atmospheric O2, and CO2[J]. Geochimica et Cosmochimica Acta, 2006, 70(23):5653-5664.
    [13] Shields-Zhou G, Och L. The case for a neoproterozoic oxygenation event:Geochemical evidence and biological consequences[J]. Gsa Today, 2011,12(3):4-11.
    [14] Och L M, Shields-Zhou G. The Neoproterozoic oxygenation event:Environmental perturbations and biogeochemical cycling[J]. Earth-Science Reviews, 2012, 110(1):26-57.
    [15] Lyons T W, Reinhard C T, Planavsky N J. The rise of oxygen in Earth’s early ocean and atmosphere[J]. Nature, 2015, 506(7488):307-315.
    [16] Planavsky N J, Reinhard C T, Wang X, et al. Earth history. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals.[J].Science, 2014, 346(6209):635-8.
    [17] Wallace M W, Hood A V, Shuster A, et al. Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants[J]. Earth&Planetary Science Letters, 2017, 466:12-19.
    [18] Daines S J, Lenton T M. The effect of widespread early aerobic marine ecosystems on methane cycling and the Great Oxidation[J]. Earth&Planetary Science Letters, 2016, 434:42-51.
    [19] Lu W, Ridgwell A, Thomas E, et al. Late inception of a resiliently oxygenated upper ocean.[J]. Science, 2018.
    [20] Hannisdal B, Peters S E. Phanerozoic Earth system evolution and marine biodiversity.[J]. Science, 2011, 334(6059):1121-4.
    [21] Bergman N M, Lenton T M, Watson A J. COPSE:A new model of biogeochemical cycling over Phanerozoic time[J]. American Journal of Science,2004, 304(5):397-437.
    [22]梅冥相.地球历史中的巨型氧化作用事件:了解古地理背景演变的重要线索[J].古地理学报, 2016, 18(3):315-334.
    [23]施春华,胡瑞忠,颜佳新.栖霞组沉积地球化学特征及其环境意义[J].矿物岩石地球化学通报, 2004, 23(2):144-148.
    [24] Wright J, Schrader H, Holser W T. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite[J]. Geochimica et Cosmochimica Acta, 1987, 51(3):631-644.
    [25] German C R,Elderfield H.Application of the Ce anomaly as a paleoredox indicator:the ground rules[J].Paleoceanography,1990,5(5):823-833.
    [26] Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa[J].Precambrian Research, 1996, 79(1-2):37-55.
    [27] Moffett J W. A radiotracer study of cerium and Manganese uptake on to suspended particles[J]. Geochim Cosmochim Acta, 1994, 58,695-703.
    [28] Le′cuyer C, Reynard B, Grandjean P. Rare earth element evolution of Phanerozoic seawater recorded in biogenic apatites[J]. Chemical Geology,2004, 204(1):63-102.
    [29] Shields G, Stille P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies:an isotopic and REE study of Cambrian phosphorites[J]. Chemical Geology, 2001, 175(1):29-48.
    [30] Baar H J W D, Brewer P G, Bacon M P. Anomalies in rare earth distributions in seawater:Gd and Tb[J]. Geochimica et Cosmochimica Acta, 1985,49(9):1961-1969.
    [31] McLennan S M. Rare earth elements in sedimentary rocks:Influence of provenance and sedimentary processes[J]. Reviews in Mineralogy, 1989,21(8):169-200.
    [32]施春华.磷矿的形成与Rodinia超大陆裂解、生物爆发的关系[D].中国科学院研究生院(地球化学研究所), 2005.
    [33]张伟.贵州瓮安灯影组叠层石磷块岩特征及形成机制研究[D].贵州大学, 2016.
    [34] Emsbo P, McLaughlin P I, Breit G N, et al. Rare earth elements in sedimentary phosphate deposits:Solution to the global REE crisis?[J]. Gondwana Research, 2015, 27(2):776-785.
    [35]欧洋.川西典型磷矿床中稀土元素的赋存状态研究[D].成都理工大学, 2015.
    [36] Dumoulin J A, Slack J F, Whalen M T, et al. Depositional setting and geochemistry of phosphorites and metalliferous black shales in the carboniferous-permian lisburne group, northern Alaska[J]. 2011.
    [37] Piper D Z, Skorupa J P, Presser T S, et al. The Phosphoria Formation at the Hot Springs Mine in Southeast Idaho; a source of selenium and other trace elements to surface water, ground water, vegetation, and biota[J]. Center for Integrated Data Analytics Wisconsin Science Center, 2000.
    [38] Molnár Z, Kiss G B, Dunkl I, et al. Geochemical characteristics of Triassic and Cretaceous phosphorite horizons from the Transdanubian Mountain Range(Western Hungary):genetic implications[J]. Mineralogical Magazine, 2018:1-49.
    [39] Imamoglu M S, Nathan Y,?oban H, et al. Geochemical, mineralogical and isotopic signatures of the Semikan, West Kasr?k “Turkish” phosphorites from the Derik–Maz?da??–Mardin area, SE Anatolia[J]. International Journal of Earth Sciences, 2009, 98(7):1679-1690.
    [40] Elderfield H, Pagett R. Rare earth elements in ichthyoliths:Variations with redox conditions and depositional environment[J]. Science of the Total Environment, 1986, 49(86):175-197.
    [41]刘世荣,胡瑞忠,周国富,等.织金新华磷矿碎屑磷灰石的矿物成分研究[J].矿物学报, 2008, 28(3):244-250.
    [42]叶连俊,陈其英,赵东旭.中国磷块岩[M].北京:科学出版社1989, 213:2-26.
    [43]谢宏,朱立军.贵州早寒武世早期磷块岩稀土元素赋存状态及分布规律研究[J].中国稀土学报, 2012, 30(5):112-119.
    [44]张杰,孙传敏,龚美菱,等.贵州织金含稀土生物屑磷块岩稀土元素赋存状态研究[J].稀土, 2007, 28(1):75-79.
    [45] Xiao S, Zhang Y, Knoll A H. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite[J]. Nature, 1998,391(6667):553-558.
    [46] Canfield D E, Poulton S W, Narbonne G M. Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life[J]. Science, 2007,315(5808):92-95.
    [47] Berry W B N, Wilde P. Progressive ventilation of the oceans-An explanation for the distribution of Lower Paleozoic black shales[J]. American Journal of Science, 1978, 278(3):257-275.
    [48] Berner R A, Raiswell R. Burial of organic carbon and pyrite sulfur in sediments over phanerozoic time:a new theory[J]. Geochimica et Cosmochimica Acta, 1983, 47(5):855-862.
    [49] Sperling E A, Wolock C J, Morgan A S, et al. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation[J]. Nature,2015, 523(7561):451.
    [50] Lenton T M, Dahl T W, Daines S J, et al. Earliest land plants created modern levels of atmospheric oxygen[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(35):9704.
    [51] Belcher C M, Mcelwain J C. Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic.[J]. Science, 2008, 321(5893):1197-1200.
    [52] Tarhan L G. The early Paleozoic development of bioturbation—Evolutionary and geobiological consequences[J]. Earth Science Review, 2018,178:177-207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700