用户名: 密码: 验证码:
基于同步辐射技术研究土壤铁氧化物固定重金属分子机制的进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Molecular sequestration mechanisms of heavy metals by iron oxides in soils using synchrotron-based techniques: A review
  • 作者:夏星 ; 杨建军
  • 英文作者:XIA Xing;YANG Jian-jun;Institute of Environment and Sustainable Development in Agriculture,Chinese Academy of Agricultural Sciences;Key Laboratory of Agro-Environment,Ministry of Agriculture and Rural Affairs;
  • 关键词:表面络合 ; 吸附 ; 共沉淀 ; 有机铁氧化物复合体 ; X射线吸收光谱
  • 英文关键词:surface complexation;;adsorption;;coprecipitation;;organo-Fe oxides;;X-ray absorption spectroscopy
  • 中文刊名:应用生态学报
  • 英文刊名:Chinese Journal of Applied Ecology
  • 机构:中国农业科学院农业环境与可持续发展研究所;农村农业部农业环境重点实验室;
  • 出版日期:2018-10-22 15:57
  • 出版单位:应用生态学报
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金项目(U1632134);; 国家重点研发计划项目(2018YFD0800305,2016YFD0800401);; 中国农业科学院科技创新工程项目(2016-2018);; 农村农业部农业环境重点实验室应用基础研究项目(Y2017PT53)资助~~
  • 语种:中文;
  • 页:351-361
  • 页数:11
  • CN:21-1253/Q
  • ISSN:1001-9332
  • 分类号:X53
摘要
铁氧化物在土壤中广泛赋存,因其比表面积大,对重金属具有很强的吸附固定能力,深刻影响着土壤重金属的形态转化过程.因此,研究土壤铁氧化物对重金属的固定机制,对于深入理解重金属在土壤系统中的环境化学行为以及评估污染土壤重金属生物有效性具有重要意义.然而,采用传统的吸附模型和化学提取法研究土壤铁氧化物固定重金属的机制具有明显的局限性,无法从分子水平上阐明其固定机制.同步辐射技术在环境土壤学的应用显著推进了在分子水平上认识土壤铁氧化物吸附重金属及其受典型环境因子影响的分子机制.本文主要从同步辐射技术的发展历程、模拟系统和实际土壤系统中铁氧化物在多种因素影响下对重金属固定的分子机制等方面进行了综述,同时对同步辐射技术的未来发展趋势及其在该研究领域的应用进行了展望.
        Iron oxides,widely distributed in soils,have large specific surface areas and strong affinity to heavy metals,and thus play a significant role in the transformation of heavy metals in soils. To understand the environmental behaviors of heavy metals and assess their bioavailability in contaminated soils,it is important to investigate the sequestration mechanisms of heavy metals by iron oxides. The traditional methods,including adsorption modeling and chemical extraction fractionation,have obvious limitations and provide little information on the sequestration mechanisms of heavy metal by iron oxides at the molecular level. The application of synchrotron-based techniques in environmental soil science has greatly enhanced the molecular-level understanding of the immobilization mechanisms of heavy metals by iron oxides under various environmental conditions. Here,we reviewed the development of synchrotron-based techniques and summarized the molecular sequestration mechanisms of heavy metals by iron oxides in model and real soil systems under various environmental factors. The future development of synchrotron-based techniques and their applications were prospected.
引文
[1]Zhao FJ,Ma YB,Zhu YG,et al.Soil contamination in China:Current status and mitigation strategies.Environmental Science&Technology,2015,49:750-759
    [2]Zeng X-B(曾希柏),Su S-M(苏世鸣),Ma S-M(马世铭),et al.Heavy metals cycling and its regulation in China crop land ecosystems.Chinese Journal of Applied Ecology(应用生态学报),2010,21(9):2418-2426(in Chinese)
    [3]Bradl HB.Adsorption of heavy metal ions on soils and soils constituents.Journal of Colloid and Interface Science,2004,277:1-18
    [4]Hesterberg D,Duff MC,Dixon JB,et al.X-ray microspectroscopy and chemical reactions in soil microsites.Journal of Environmental Quality,2011,40:667-678
    [5]Bertsch PM,Seaman JC.Characterization of complex mineral assemblages:Implications for contaminant transport and environmental remediation.Proceedings of the National Academy of Sciences of the United States of America,1999,96:3350-3357
    [6]Jambor JL,Dutrizac JE.Occurrence and constitution of natural and synthetic ferrihydrite,a widespread iron oxyhydroxide.Chemical Reviews,1998,98:2549-2586
    [7]Campos EA,Pinto DVBS,Oliveira JISD,et al.Synthesis,characterization and applications of iron oxide nanoparticles:A short review.Journal of Aerospace Technology and Management,2015,7:267-276
    [8]Cornell RM,Schwertmann U.The Iron Oxides:Structure,Properties,Reactions,Occurrences and Uses.2nd Ed.Weinheim:Wiley-VCH Press,2003
    [9]Koretsky CM,Sverjensky DA,Sahai N.A model of surface site types on oxide and silicate minerals based on crystal chemistry:Implications for site types and densities,multi-site adsorption,surface infrared spectroscopy,and dissolution kinetics.American Journal of Science,1998,298:349-438
    [10]Davis JA,Kent DB.Surface complexation modeling in aqueous geochemistry.Reviews in Mineralogy,1990,23:177-260
    [11]Chen CM,Dynes JJ,Wang J,et al.Properties of Feorganic matter associations via coprecipitation versus adsorption.Environmental Science&Technology,2014,48:13751-13759
    [12]Mikutta R,Lorenz D,Guggenberger G,et al.Properties and reactivity of Fe-organic matter associations formed by coprecipitation versus adsorption:Clues from arsenate batch adsorption.Geochimica et Cosmochimica Acta,2014,144:258-276
    [13]Sodano M,Lerda C,Nistico R,et al.Dissolved organic carbon retention by coprecipitation during the oxidation of ferrous iron.Geoderma,2017,307:19-29
    [14]Kleber M,Eusterhues K,Keiluweit M,et al.Mineralorganic associations:Formation,properties,and relevance in soil environments.Advances in Agronomy,2015,130:1-140
    [15]Stuckey JW,Yang JJ,Wang J,et al.Advances in scanning transmission X-ray microscopy for elucidating soil biogeochemical processes at the submicron scale.Journal of Environmental Quality,2017,46:1166-1174
    [16]Hsu LC,Liu YT,Tzou YM.Comparison of the spectroscopic speciation and chemical fractionation of chromium in contaminated paddy soils.Journal of Hazardous Materials,2015,296:230-238
    [17]Bacon JR,Davidson CM.Is there a future for sequential chemical extraction?The Analyst,2008,133:25-46
    [18]Christophi CA,Axe L.Competition of Cd,Cu,and Pb adsorption on goethite.Journal of Environmental Engineering,2000,126:66-74
    [19]Manceau A,Marcus MA,Tamura N.Quantitative speciation of heavy metals in soils and sediments by synchrotron X-ray techniques.Reviews in Mineralogy&Geochemistry,2002,49:341-428
    [20]Lombi E,Hettiarachchi GM,Scheckel KG.Advanced in situ spectroscopic techniques and their applications in environmental biogeochemistry:Introduction to the special section.Journal of Environmental Quality,2011,40:659-666
    [21]Lombi E,Susini J.Synchrotron-based techniques for plant and soil science:Opportunities,challenges and future perspectives.Plant and Soil,2009,320:1-35
    [22]Grafe M,Donner E,Collins RN,et al.Speciation of metal(loid)s in environmental samples by X-ray absorption spectroscopy:A critical review.Analytica Chimica Acta,2014,822:1-22
    [23]Templeton A,Knowles E.Microbial transformations of minerals and metals:Recent advances in geomicrobiology derived from synchrotron-based X-ray spectroscopy and X-ray microscopy.Annual Review of Earth and Planetary Sciences,2009,37:367-391
    [24]Chao WL,Harteneck BD,Liddle JA,et al.Soft X-ray microscopy at a spatial resolution better than 15 nm.Nature,2004,435:1210-1213
    [25]Yang JJ,Liu J,Dynes JJ,et al.Speciation and distribution of copper in a mining soil using multiple synchrotron-based bulk and microscopic techniques.Environmental Science and Pollution Research International,2014,21:2943-2954
    [26]Yang JJ,Regier T,Dynes JJ,et al.Soft X-ray induced photoreduction of organic Cu(Ⅱ)compounds probed by X-ray absorption near-edge(XANES)spectroscopy.Analytical Chemistry,2011,83:7856-7862
    [27]Fang L-C(方临川),Huang Q-Y(黄巧云),Cai P(蔡鹏),et al.Application of XAFS technique in interface absorption of heavy metals.Chinese Journal of Applied&Environmental Biology(应用与环境生物学报),2008,14(5):737-744(in Chinese)
    [28]Pan G(潘纲),Li X-L(李贤良),Qin Y-W(秦延文),et al.EXAFS studies on adsorption-desorption mechanism of Zn atδ-MnO2-water interface.Chinese Journal of Environmental Science(环境科学),2003,24(4):54-59(in Chinese)
    [29]Caporale AG,Violante A.Chemical processes affecting the mobility of heavy metals and metalloids in soil environments.Current Pollution Reports,2016,2:15-27
    [30]Arai Y.X-ray absorption spectroscopic investigation of molybdenum multinuclear sorption mechanism at the goethite-water interface.Environmental Science&Technology,2010,44:8491-8496
    [31]Johnston CP,Chrysochoou M.Mechanisms of chromate adsorption on hematite.Geochimica et Cosmochimica Acta,2014,138:146-157
    [32]Missana T,Alonso U,Scheinost AC,et al.Selenite retention by nanocrystalline magnetite:Role of adsorption,reduction and dissolution/co-precipitation processes.Geochimica et Cosmochimica Acta,2009,73:6205-6217
    [33]Arai Y.Spectroscopic evidence for Ni(Ⅱ)surface speciation at the iron oxyhydroxides-water interface.Environmental Science&Technology,2008,42:1151-1156
    [34]Ona-Nguema G,Morin G,Juillot F,et al.EXAFS analysis of arsenite adsorption onto two-line ferrihydrite,hematite,goethite,and lepidocrocite.Environmental Science&Technology,2005,39:9147-9155
    [35]Mitsunobu S,Takahashi Y,Terada Y,et al.Antimony(Ⅴ)incorporation into synthetic ferrihydrite,goethite,and natural iron oxyhydroxides.Environmental Science&Technology,2010,44:3712-3718
    [36]Mayo JT,Yavuz C,Yean S,et al.The effect of nanocrystalline magnetite size on arsenic removal.Science and Technology of Advanced Materials,2007,8:71-75
    [37]Zeng H,Singh A,Basak S,et al.Nanoscale size effects on uranium(Ⅵ)adsorption to hematite.Environmental Science&Technology,2009,43:1373-1378
    [38]Ha J,Trainor TP,Farges F,et al.Interaction of aqueous Zn(Ⅱ)with hematite nanoparticles and microparticles.Part 1.EXAFS study of Zn(Ⅱ)adsorption and precipitation.Langmuir,2009,25:5574-5585
    [39]Namie 6)SNik J,Rabajczyk A.Speciation analysis of chromium in environmental samples.Critical Reviews in Environmental Science and Technology,2012,42:327-377
    [40]Komarek M,Koretsky CM,Stephen KJ,et al.Competitive adsorption of Cd(Ⅱ),Cr(Ⅵ),and Pb(Ⅱ)onto nanomaghemite:A spectroscopic and modeling approach.Environmental Science&Technology,2015,49:12851-12859
    [41]Morin G,Ona-Nguema G,Wang YH,et al.Extended X-ray absorption fine structure analysis of arsenite and arsenate adsorption on maghemite.Environmental Science&Technology,2008,42:2361-2366
    [42]Wang SL,Mulligan CN.Speciation and surface structure of inorganic arsenic in solid phases:A review.Environment International,2008,34:867-879
    [43]Parsons JG,Hernandez J,Gonzalez CM,et al.Sorption of Cr(Ⅲ)and Cr(Ⅵ)to high and low pressure synthetic nano-magnetite(Fe3O4)particles.Chemical Engineering Journal,2014,254:171-180
    [44]Jiang W,Lv J,Luo L,et al.Arsenate and cadmium co-adsorption and co-precipitation on goethite.Journal of Hazardous Materials,2013,262:55-63
    [45]Li W,Zhang S,Jiang W,et al.Effect of phosphate on the adsorption of Cu and Cd on natural hematite.Chemosphere,2006,63:1235-1241
    [46]Tiberg C,Sjostedt C,Persson I,et al.Phosphate effects on copper(Ⅱ)and lead(Ⅱ)sorption to ferrihydrite.Geochimica et Cosmochimica Acta,2013,120:140-157
    [47]Meena AH,Arai Y.Effects of common groundwater ions on chromate removal by magnetite:Importance of chromate adsorption.Geochemical Transactions,2016,17:1
    [48]Elzinga EJ,Peak D,Sparks DL.Spectroscopic studies of Pb(Ⅱ)-sulfate interactions at the goethite-water interface.Geochimica Et Cosmochimica Acta,2001,65:2219-2230
    [49]Angelico R,Ceglie A,He J,et al.Particle size,charge and colloidal stability of humic acids coprecipitated with ferrihydrite.Chemosphere,2014,99:239-247
    [50]Seda NN,Koenigsmark F,Vadas TM.Sorption and coprecipitation of copper to ferrihydrite and humic acid organomineral complexes and controls on copper availability.Chemosphere,2016,147:272-278
    [51]Liu C,Huang P.Kinetics of lead adsorption by iron oxides formed under the influence of citrate.Geochimica Et Cosmochimica Acta,2003,67:1045-1054
    [52]Alcacio TE,Hesterberg D,Chou JW,et al.Molecular scale characteristics of Cu(Ⅱ)bonding in goethitehumate complexes.Geochimica Et Cosmochimica Acta,2001,65:1355-1366
    [53]Huang L,Hu HQ,Li XY,et al.Influences of low molar mass organic acids on the adsorption of Cd2+and Pb2+by goethite and montmorillonite.Applied Clay Science,2010,49:281-287
    [54]Flynn ED,Catalano JG.Competitive and cooperative effects during nickel adsorption to iron oxides in the presence of oxalate.Environmental Science&Technology,2017,51:9792-9799
    [55]Kim EJ,Hwang BR,Baek K.Effects of natural organic matter on the coprecipitation of arsenic with iron.Environmental Geochemistry and Health,2015,37:1029-1039
    [56]Jiang WJ,Cai Q,Xu W,et al.Cr(Ⅵ)adsorption and reduction by humic acid coated on magnetite.Environmental Science&Technology,2014,48:8078-8085
    [57]Chen XC,Chen LT,Shi JY,et al.Immobilization of heavy metals by Pseudomonas putida CZ1/goethite composites from solution.Colloids and Surfaces B:Biointerfaces,2008,61:170-175
    [58]Du HH,Lin YP,Chen WL,et al.Copper adsorption on composites of goethite,cells of Pseudomonas putida and humic acid.European Journal of Soil Science,2017,68:514-523
    [59]Moon EM,Peacock CL.Adsorption of Cu(Ⅱ)to ferrihydrite and ferrihydrite-bacteria composites:Importance of the carboxyl group for Cu mobility in natural environments.Geochimica et Cosmochimica Acta,2012,92:203-219
    [60]Mitsunobu S,Muramatsu C,Watanabe K,et al.Behavior of antimony(Ⅴ)during the transformation of ferrihydrite and its environmental implications.Environmental Science&Technology,2013,47:9660-9667
    [61]Ford RG,Kemner KM,Bertsch PM.Influence of sorbate-sorbent interactions on the crystallization kinetics of nickel-and lead-ferrihydrite coprecipitates.Geochimica et Cosmochimica Acta,1999,63:39-48
    [62]Nachtegaal M,Sparks DL.Effect of iron oxide coatings on zinc sorption mechanisms at the clay-mineral/water interface.Journal of Colloid and Interface Science,2004,276:13-23
    [63]Sorensen MA,Stackpoole MM,Frenkel AI,et al.Aging of iron(hydr)oxides by heat treatment and effects on heavy metal binding.Environmental Science&Technology,2000,34:3991-4000
    [64]Tessier A,Campbell PGC,Bisson M.Sequential extraction procedure for the speciation of particulate trace metals.Analytical Chemistry,1979,51:844-851
    [65]Shimizu M,Arai Y,Sparks DL.Multiscale assessment of methylarsenic reactivity in soil.2.Distribution and speciation in soil.Environmental Science&Technology,2011,45:4300-4306
    [66]Barrett JE,Taylor KG,Hudson-Edwards KA,et al.Solid-phase speciation of Pb in urban road dust sediment:A XANES and EXAFS study.Environmental Science&Technology,2010,44:2940-2946
    [67]Kumpiene J,Fitts JP,Mench M.Arsenic fractionation in mine spoils 10 years after aided phytostabilization.Environmental Pollution,2012,166:82-88
    [68]Kumpiene J,Mench M,Bes CM,et al.Assessment of aided phytostabilization of copper-contaminated soil by X-ray absorption spectroscopy and chemical extractions.Environmental Pollution,2011,159:1536-1542
    [69]Landrot G,Tappero R,Webb SM,et al.Arsenic and chromium speciation in an urban contaminated soil.Chemosphere,2012,88:1196-1201
    [70]Burke IT,Mayes WM,Peacock CL,et al.Speciation of arsenic,chromium,and vanadium in red mud samples from the Ajka spill site,Hungary.Environmental Science&Technology,2012,46:3085-3092
    [71]Fan JX,Wang YJ,Liu C,et al.Effect of iron oxide reductive dissolution on the transformation and immobilization of arsenic in soils:New insights from X-ray photoelectron and X-ray absorption spectroscopy.Journal of Hazardous Materials,2014,279:212-219
    [72]Henneberry YK,Kraus TEC,Nico PS,et al.Structural stability of coprecipitated natural organic matter and ferric iron under reducing conditions.Organic Geochemistry,2012,48:81-89,,
    [73]Guenet H,Davranche M,Vantelon D,et al.Evidence of organic matter control on As oxidation by iron oxides in riparian wetlands.Chemical Geology,2016,439:161-172
    [74]Wang YH,Frutschi M,Suvorova E,et al.Mobile uranium(Ⅳ)-bearing colloids in a mining-impacted wetland.Nature Communications,2013,4:2942
    [75]Weber FA,Voegelin A,Kaegi R,et al.Contaminant mobilization by metallic copper and metal sulphide colloids in flooded soil.Nature Geoscience,2009,2:267-271
    [76]Hofacker AF,Voegelin A,Kaegi R,et al.Temperaturedependent formation of metallic copper and metal sulfide nanoparticles during flooding of a contaminated soil.Geochimica et Cosmochimica Acta,2013,103:316-332
    [77]Weber FA,Hofacker AF,Voegelin A,et al.Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil.Environmental Science&Technology,2010,44:116-122
    [78]Sun LJ,Zheng CQ,Yang JJ,et al.Impact of sulfur(S)fertilization in paddy soils on copper(Cu)accumulation in rice(Oryza sativa L.)plants under flooding conditions.Biology and Fertility of Soils,2015,52:31-39
    [79]Yang JJ,Zhu SH,Zheng CQ,et al.Impact of S fertilizers on pore-water Cu dynamics and transformation in a contaminated paddy soil with various flooding periods.Journal of Hazardous Materials,2015,286:432-439
    [80]Cismasu AC,Michel FM,Tcaciuc AP,et al.Composition and structural aspects of naturally occurring ferrihydrite.Comptes Rendus Geoscience,2013,343:210-218
    [81]K9gel-Knabner I,Amelung W,Cao ZH,et al.Biogeochemistry of paddy soils.Geoderma,2010,157:1-14
    [82]Sun L-J(孙丽娟),Duan D-C(段德超),Peng C(彭程),et al.Influence of sulfur on the speciation transformation and phyto-availability of heavy metals in soil:Areview.Chinese Journal of Applied Ecology(应用生态学报),2014,25(7):2141-2148(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700