用户名: 密码: 验证码:
不同土质孔隙结构特点及其毛细水上升规律分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Pore structure characteristics of different soils and analysis of capillary water rising law
  • 作者:吕秋丽 ; 杨海华
  • 英文作者:Lü Qiuli;Yang Haihua;College of Water Conservancy and Civil Engineering,Xinjiang Agricultural University;
  • 关键词:土质 ; 颗粒级配 ; 孔隙结构 ; 毛细水上升高度
  • 英文关键词:soil texture;;decisive effect of particle;;pore structure;;rising height of capillary water
  • 中文刊名:能源与环保
  • 英文刊名:China Energy and Environmental Protection
  • 机构:新疆农业大学水利与土木工程学院;
  • 出版日期:2019-06-03 13:58
  • 出版单位:能源与环保
  • 年:2019
  • 期:05
  • 语种:中文;
  • 页:106-110
  • 页数:5
  • CN:41-1443/TK
  • ISSN:1003-0506
  • 分类号:S152
摘要
根据室内竖管毛细水上升高度试验观测不同土质毛细水上升高度,分析3种典型土质孔隙结构特点及其毛细水上升高度随时间变化的规律。粉土、砂土和黏土毛细水上升高度分别为116,47,44 cm;上升速度峰值分别为12,95,95 cm/h;平均上升速度分别为0.32,0.13,0.08 cm/h。试验结果表明:粉土毛细水上升高度高、上升速度快、上升持续时间长,砂土毛细水上升高度低、上升速度最快、上升持续时间短,黏土毛细水上升高度低、上升速度慢、上升持续时间长;毛细水上升高度、上升速度反映了土颗粒形成的孔隙结构特点,上升高度高毛细通道细且畅通、上升高度低毛细通道粗或阻塞。
        Based on laboratory vertical capillary water elevation test,the elevation of capillary water in different soils was observed,and the pore structure characteristics of three typical soils and the law of capillary water elevation varying with time were analyzed.The capillary water rising heights of silt,sand and clay were 116,47 and 44 cm,the peak rising speeds were 12,95 and 95 cm/h,and the average rising speeds were 0.32,0.13 and 0.08 cm/h,respectively.The test results showed that the silt capillary water has high rising height,fast rising speed and long rising duration,the sand capillary water has low rising height,the fastest rising speed and short rising duration,and the clay capillary water has low rising height,slow rising speed and long rising duration.The rising height and rising speed of capillary water reflect the pore structure characteristics of soil particles,and the rising height was high.The capillary channel was thin and smooth,and the rising height was low and the capillary channel was thick or blocked.
引文
[1] A.A.罗戴.土壤水[M].北京:科学出版社,1964.
    [2] 孙菽芬.土壤内水分流动、温度分布及其表面蒸发效应的研究[J].水利学报,1985(1):68.Sun Shufen.Study on water flow,temperature distribution and surface evaporation effect in soil[J].Journal of Water Conservancy,1985(1):68.
    [3] 王积强.土壤内水分流动、温度分布及其表面蒸发效应的研究[J].水利学报,1984(2):69-70.Wang Jiqiang.Study on water flow,temperature distribution and surface evaporation effect in soil[J].Journal of Water Conservancy,1984(2):69-70.
    [4] 林家鼎,孙菽芬.土壤内水分流动、温度分布及其表面蒸发效应的研究——土壤表面蒸发阻抗的探讨[J].水利学报,1983(7):1-8.Lin Jiading,Sun Shufen.Study on water flow,temperature distribution and surface evaporation effect in soil:discussion on evaporation impedance of soil surface[J].Journal of Water Conservancy,1983(7):1-8.
    [5] 宋郁东,樊自立,雷志栋,等.中国塔里木河水资源与生态问题研究[M].乌鲁木齐:新疆人民出版社,2000.
    [6] 李旭,林森.失水过程中的土壤孔隙比―含水量―吸力关系[J].西北地震学报,2011,33(S1):52-57.Li Xu,Lin Sen.Soil porosity ratio-water content-suction relationship in the process of water loss[J].Journal of the Northwest Earthquake,2011,33(S1):52-57.
    [7] 杨苑璋.介绍一种测定土壤水分的仪器——2000型土壤负压计[J].土壤,2000(6):336.Yang Yuanzhang.Introduction of an instrument for the determination of soil moisture:2000 soil negative pressure meter[J].Soil,2000(6):336.
    [8] 史文娟,汪志荣,沈冰,等.夹砂层土体构型毛管水上升的实验研究[J].水土保持学报,2004(6):167-170.Shi Wenjuan,Wang Zhirong,Shen Bing,et al.Experimental study on the rise of capillary water in the soil configuration of sand clamping layer[J].Journal of Soil and Water Conservation,2004(6):167-170.
    [9] 王丁,费良军.层状土壤上升毛管水运移特性试验研究[J].地下水,2009,31(1):35-37,66.Wang Ding,Fei Liangjun.Experimental study on water transport characteristics of ascending capillary in layered soil[J].Ground Water,2009,31(1):35-37,66.
    [10] 张平,吴昊,殷洪建,等.土壤构造对毛细管水上升影响的研究[J].水土保持研究,2011,18(4):265-267.Zhang Ping,Wu Hao,Yin Hongjian,et al.Study on the effect of soil structure on the rise of capillary water[J].Soil and Water Conservation Studies,2011,18(4):265-267.
    [11] 何克瑾,费良军,尹娟.均质土壤上升毛管水运动特性试验[J].沈阳农业大学学报,2007(4):581-585.He Kejin,Fei Liangjun,Yin Juan.Test of water motion characteristics of homogenous soil ascending capillary[J].Journal of Shenyang Agricultural University,2007(4):581-585.
    [12] 卢靖,程彬.非饱和黄土土水特征曲线的研究[J].岩土工程学报,2007(10):1591-1592.Lu Jing,Cheng Bin.Study on water characteristic curve of unsaturated loess soil[J].Journal of Geotechnical Engineering,2007(10):1591-1592.
    [13] 姚华,张喜发,张冬青.影响粗粒土毛细水上升高度的因素研究[J].勘察科学技术,2007(1):10-12,26.Yao Hua,Zhang Xifa,Zhang Dongqing.Study on factors affecting the height of fine water rise in coarse-grained soil[J].Survey Science and Technology,2007(1):10-12,26.
    [14] 肖红宇,刘明寿,彭鹏程,等.基于黏性土分形特征的毛细水上升高度研究[J].水文地质工程地质,2016,43(6):48-52,58.Xiao Hongyu,Liu Mingshou,Peng Pengcheng,et al.Study on the rise height of capillary water based on the fractal characteristics of viscous soil[J].Hydrogeological Engineering Geology,2016,43(6):48-52,58.
    [15] 冯君,巫锡勇,孟少伟.非饱和黏性土土水特征曲线的分形特性研究[J].铁道科学与工程学报,2017,14(7):1435-1441.Feng Jun,Wu Xiyong,Meng Shaowei.Study on fractal characteristics of water characteristic curves of unsaturated clay soil[J].Journal of Railway Science and Engineering,2017,14(7):1435-1441.
    [16] 栗现文,周金龙,周念清,等.对粉质黏土毛细水上升的影响[J].干旱区资源与环境,2016,30(7):192-196.Li Xianwen,Zhou Jinlong,Zhou Nianqing,et al.Effects on the rise of capillary water in powdered clay[J].Resources and Environment in Arid Areas,2016,30(7):192-196.
    [17] 李志清,周应新,王珏,等.一种量测砂性土毛细水上升高度的试验装置:CN202837145U[P].2013-03-27.
    [18] 中华人民共和国水利部.土工试验方法与标准:GB/T 50123—1999[S].北京:中国水利水电出版社,2010.
    [19] 王启立,胡亚非,何敏,等.石墨多孔介质孔隙度与比表面积的分形描述[J].煤炭学报,2010,35(10):1725-1729.Wang Qili,Hu Yafei,He Min,et al.Fractal description of porosity and specific surface area of graphite porous media[J].Journal of China Coal Society,2010,35(10):1725-1729.
    [20] 周宏伟,谢和平.多孔介质孔隙度与比表面积的分形描述[J].西安矿业学院学报,1997(2):2-7.Zhou Hongwei,Xie Heping.Fractal description of porosity and specific surface area of porous media[J].Journal of Xi′an Institute of Mining,1997(2):2-7.
    [21] 李长宝,史怀远.土壤物理学[M].北京:中国林业出版社,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700