用户名: 密码: 验证码:
寡养单胞菌对S~(2-)氧化特性及主要代谢途径
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:S~(2-)-oxidizing characteristics and main bio-oxidation metabolic pathway of Stenotrophomonas sp.sp3
  • 作者:徐瑶瑶 ; 宋晨 ; 路金霞 ; 王进 ; 岳正波 ; 刘晓玲
  • 英文作者:XU Yao-yao;SONG Chen;LU Jin-xia;WANG Jin;YUE Zheng-bo;LIU Xiao-ling;Chinese Research Academy of Environmental Sciences;School of Resources and Environmental Engineering, Hefei University of Technology;Nanjing R&D Technology Group Co., Ltd;Nanjing Hydraulic Research Institute;
  • 关键词:S2- ; 筛选 ; 氧化特性 ; 代谢途径
  • 英文关键词:S2-;;screening;;sulphur oxidation characteristics;;metabolic pathway
  • 中文刊名:中国环境科学
  • 英文刊名:China Environmental Science
  • 机构:中国环境科学研究院;合肥工业大学资源与环境工程学院;南京瑞迪建设科技有限公司;南京水利科学研究院;
  • 出版日期:2019-08-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:08
  • 基金:北京市自然科学基金资助项目(8182058);; 中央院所基本科研业务专项(2019YSKY-003)
  • 语种:中文;
  • 页:239-248
  • 页数:10
  • CN:11-2201/X
  • ISSN:1000-6923
  • 分类号:X172;X52
摘要
以无机硫(S2)-为目标污染物,从北京东沙河黑臭水体筛选出一株能够高效氧化S~(2-)的土著硫氧化菌,并对其进行16S rRNA测序及生理生化特性鉴定,结果表明,该菌株属于寡养单胞菌属(Stenotrophomonas),命名为Stenotrophomonas sp.sp3.菌株sp3在温度25℃,初始pH值7.0,初始葡萄糖浓度0.25%,初始菌浓度1.00g/L时,菌株sp3对S~(2-)的氧化率最高.在此适宜条件下,反应60h后,菌株sp3对S~(2-)的最高氧化率达到86.6%.S~(2-)的浓度在整个氧化过程中持续下降后保持稳定,在此过程中产生了S~0,S_2O_3~(2-),SO_3~(2-)以及SO_4~(2-)这4种其它存在形态的硫.随着S~(2-)被氧化,SO_4~(2-)的浓度呈缓慢上升的趋势.利用高通量测序技术推测菌株sp3主要是通过副球菌硫氧化途径(PSO)将非稳定态的S~(2-)逐步转化为稳定态的SO_4~(2-).在此代谢途径中,一部分S~(2-)被氧化为S~0,另一部分S~(2-)则直接氧化为SO_3~(2-);S~0与SO_3~(2-)可自发反应生成S_2O_3~(2-),而S_2O_3~(2-)发生歧化反应再释放出SO_3~(2-)和S~0;反应生成的部分SO_3~(2-)继续直接氧化为SO_4~(2-).菌株sp3在黑臭水体的水质净化过程中有一定的应用前景.
        Inorganic sulfur(S~(2-)) was used as the target pollutant, and a single strain capable of S~(2-)-oxidizing was obtained from Dongsha river(a black-stinking river) located in Beijing. Through both of the physiological-biochemical characteristics and the 16 S rRNA sequencing experiment, this single strain was identified as Stenotrophomonas, and named as Stenotrophomonas sp.sp3. The experiment on the growth and S~(2-)-oxidizing characteristics of this strain sp3 was then carried out. The best conditions of S~(2-)-oxidizing were as follows: initial pH of 7.0, 25℃, initial glucose concentration of 0.25% along with initial cell concentration of 1.00 g/L. Under the above bio-oxidation conditions, the highest S~(2-)-oxidizing ratio was arrived at 86.6% by this strain sp3 after the bio-reaction of 60 h. The concentration of S~(2-)decreased continually and then kept in a stable status in the whole bio-reaction process, and other sulphur chemical forms including S~0, S_2O_3~(2-), SO_3~(2-)and SO_4~(2-)were produced in this period. With the bio-oxidation of S~(2-), the concentration of SO_4~(2-)increased slowly. High-throughput sequencing technologies were used to investigate the main metabolic pathway of S~(2-)bio-oxidation by this strain sp3. The paracoccus sulfur oxidation process was the possibly main metabolic pathway of S~(2-)(unstable valence state) to SO_4~(2-)(stable valence state). It was initially concluded that a portion of S~(2-)was oxidized to S~0, while other part of S~(2-)was directly oxidized to SO_3~2; and then S~0 reacted with SO_3~(2-)spontaneously to form S_2O_3~(2-), while the latter was released SO_3~(2-)and S~0 by the disproportionate reaction again. The SO_3~(2-)accumulated gradually in the system was further directly oxidized to SO_4~(2-). This study indicated that this strain sp3 has potential application in water purification of the black-stinking wate bodies.
引文
[1]国务院.水污染防治行动计划[z]. 2015.The State Council. Action plan for water pollution prevention and control[z]. 2015.
    [2]住房和城乡建设部和环境保护部.全国城市黑臭水体整治信息发布平台[EB/OL]. http://www.hcstzz.com/2017-08.Ministry of Housing and Urban-Rural Construction and Ministry of Environmental Protection. National information publishing platform for urban black and odorous water treatment[EB/OL]. http://www.hcstzz.com/2017-08.
    [3] Song C, Liu X L, Song Y H, et al. Key blackening and stinking pollutants in Dongsha River of Beijing:Spatial distribution and source identification[J]. Journal of Environmental Management, 2017,200:335-346.
    [4] Tang W, Shan B, Zhang H, et al. Heavy metal contamination in the surface sediments of representative limnetic ecosystems in eastern China[J]. Scientific Reports, 2014,4:7152-7158.
    [5]王玉琳,汪靓,华祖林.黑臭水体中不同浓度Fe2+、S2-与DO和水动力关系[J].中国环境科学, 2018,38(2):627-633.Wang Y L, Wang L, Hua Z L. The relationships of different concentration Fe2+, S2-with hydrodynamics, DO in black bloom water based on quantile regression method[J]. China Environmental Science,2018,38(2):627-633.
    [6]王旭,王永刚,孙长虹,等.城市黑臭水体形成机理与评价方法研究进展[J].应用生态学报, 2016,27(4):1331-1340.Wang X, Wang Y G, Sun C H, et al. Formation mechanism and assessment method for urban black and odorous water body:A review[J]. Chinese Journal of Applied Ecology, 2016,27(4):1331-1340.
    [7] Liu C, Shen Q, Zhou Q, et al. Precontrol of algae-induced black blooms through sediment dredging at appropriate depth in a typical eutrophic shallow lake[J]. Ecological Engineering, 2015,77:139-145.
    [8] Jiang Y, Xie P, Nie Y. Concentration and bioaccumulation of cyanobacterial bioactive and odorous metabolites occurred in a large,shallow Chinese lake[J]. Bulletin of Environmental Contamination and Toxicology, 2014,93:643-648.
    [9] Sheng Y, Qu Y, Ding C, et al. A combined application of different engineering and biological techniques to remediate a heavily polluted river[J]. Ecological Engineering, 2013,57(57):1-7.
    [10] Gu D G, Xu H, He Y, et al. Remediation of urban river water by Pontederia cordata combined with artificial aeration:Organic matter and nutrients removal and root-adhered bacterial communities[J].International Journal of Phytoremediation, 2015,17(11):1105-1114.
    [11] He W, Shang J G, Lu X, et al. Effects of sludge dredging on the prevention and control of algae-caused black bloom in Taihu Lake,China[J]. Journal of Environmental Sciences, 2013,25(3):430-440.
    [12]陈超,钟继承,范成新,等.疏浚对湖泛的影响:以太湖八房港和闾江口水域为例[J].中国环境科学, 2014,34(8):2071-2077.Chen C, Zhong J C, Fan C X, et al. Effects of sludge dredging on black bloom:a case study of Bafang port and Lujiang port of Taihu Lake[J]. China Environmental Science, 2014,34(8):2071-2077.
    [13]刘树娟,陈磊,钟润生,等.硝酸钙对河流底泥中含硫化合物嗅味原位控制[J].环境科学研究, 2012,25(6):691-698.Liu S J, Chen L, Zhong R S, et al. In situ control of odor in sulfide-containing compounds with calcium nitrate in river sediments[J]. Research of Environmental Sciences, 2012,25(6):691-698.
    [14] Liang-Liang T, Peng L I, Jing-Min D, et al. The Chemical Coagulation-Advanced Oxidation Composite Process for Treating Sulfur-contained Tannery Wastewater[J]. Leather&Chemicals, 2011,28(6):8-10.
    [15] Wang M, Yang G, Min H, et al. Bioaugmentation with the nicotine-degrading bacterium Pseudomonas sp. HF-1in a sequencing batch reactor treating tobacco wastewater:Degradation study and analysis of its mechanisms[J]. Water Research, 2009,43(17):4187-4196.
    [16] Jin M, Wang X W, Gong T S, et al. A novel membrane bioreactor enhanced by effective microorganisms for the treatment of domestic wastewater[J]. Applied Microbiology&Biotechnology, 2005,69(2):229-235.
    [17] Chen J, Koopman B, Fang G, et al. Bioaugmentation with Gordonia strain JW8 in treatment of pulp and paper wastewater[J]. Clean Technologies&Environmental Policy, 2012,14(5):899-904.
    [18] Semrany S, Favier L, Djelal H, et al. Bioaugmentation:Possible solution in the treatment of Bio-Refractory Organic Compounds(Bio-ROCs)[J]. Biochemical Engineering Journal, 2012,69(51):75-86.
    [19]徐熊鲲,谢翼飞,陈政阳,等.曝气强化微生物功能菌修复黑臭水体[J].环境工程学报, 2017,11(8):4559-4565.Xu X K, Xie Y F, Chen Z Y, et al. Remediation of urban black-odorous river by aeration enhancing functional strains[J]. Chinese Journal of Environmental Engineering, 2017,11(8):4559-4565.
    [20]吴霞,谢悦波.直接投菌法在城市重污染河流治理中的应用研究[J].环境工程学报, 2014,8(8):3331-3336.Wu X, Xie Y B. Application of directly adding microbial agent to improve water quality of heavily polluted urban river[J]. Chinese Journal of Environmental Engineering, 2014,8(8):3331-3336.
    [21] Guo H, Chen C, Lee D J, et al. Proteomic analysis of sulfur–nitrogen-carbon removal by Pseudomonas sp. C27under micro–aeration condition[J]. Enzyme and Microbial Technology, 2014,56:20-27.
    [22]东秀珠,蔡妙英.常见细菌系统鉴定乎册[M].北京:科学出版社,2002.Dong X Z, Cai M Y. Systematic identification of common bacteria[M].Beijing:Science Press, 2002.
    [23]沈萍,范秀容,李广武.微生物学实验[M].北京:高等教育出版社,2003.Shen P, Fan X R, Li G W. Microbiology Experiment[M]. Beijing:Higher Education Press, 2003.
    [24] Zhuang R, Lou Y, Qiu X, et al. Identification of a yeast strain able to oxidize and remove sulfide high efficiently[J]. Applied Microbiology&Biotechnology, 2017,101(1):391-400.
    [25]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M]. 4版.中国环境科学出版社, 2002.Editorial board of water and wastewater monitoring and analysis method of the State Environmental Protection Administration. Water and Wastewater Monitoring and Analysis Method(4)[M]. China Environmental Science Press, 2002.
    [26]冯玉雪,毛缜,吕蒙蒙.一株DDT降解菌的筛选及其降解特性[J].中国环境科学, 2018,(5):1935-1942.Feng Y X, Mao Z, LüM M. Screening and degradation characteristics of a DDT-degrading bacteria[J]. China Environmental Science,2018(5):1935-1942.
    [27] Lambert T, MarieCécile P, Fran?ois D, et al. Characterization of the Chromosomal aac(6′)-Iz Gene of Stenotrophomonas maltophilia[J].Antimicrob Agents Chemother, 1999,43(10):2366-2371.
    [28] Shen Y J, Lu P, Mei H, et al. Isolation of a methyl parathion-degrading strain Stenotrophomonas sp. SMSP-1and cloning of the ophc2gene[J].Biodegradation, 2010,21(5):785-792.
    [29] Dubey K K, Fulekar M H. Chlorpyrifos bioremediation inPennisetumrhizosphere by a novel potential degrader Stenotrophomonas maltophilia MHF ENV20[J]. World Journal of Microbiology&Biotechnology, 2012,28(4):1715-1725.
    [30] Fang H, Deng Y, Ge Q, et al. Biodegradability and ecological safety assessment of Stenotrophomonas sp. DDT-1in the DDT-contaminated soil[J]. Ecotoxicology and Environmental Safety, 2018,158:145-153.
    [31] Pradhan S, Rai L C. Optimization of flow rate, initial metal ion concentration and biomass density for maximum removal of Cu2+by immobilized Microcystis[J]. World Journal of Microbiology&Biotechnology, 2000,16(6):579-584.
    [32] Quatrini R, Appia-Ayme C, Denis Y, et al. Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans[J]. Bmc Genomics, 2009,10(1):394-412.
    [33]刘阳,姜丽晶,邵宗泽.硫氧化细菌的种类及硫氧化途径的研究进展[J].微生物学报, 2018,58(2):191-201.Liu Y, Jiang L J, Shao Z Z. Research progress on species of sulfur-oxidizing bacteria and sulfur-oxidizing pathways[J]. Acta Microbiologica Sinica, 2018,58(2):191-201.
    [34] Wang Z B, Li Y Q, Lin J Q, et al. The two-component system RsrS-RsrR regulates the tetrathionate intermediate pathway for thiosulfate oxidation in Acidithiobacillus caldus[J]. Froutiers in Microbiology, 2016,7(1755):1-15.
    [35] Kelly D P, Shergill J K, Lu W P, et al. Oxidative metabolism of inorganic sulfur compounds by bacteria[J]. Antonie Van Leeuwenhoek, 1997,71(1/2):95-107.
    [36]张宪.嗜酸氧化硫硫杆菌的全基因组测序及硫氧化途径研究[D].中南大学, 2014.Zhang X. Whole-genome sequencing of Acidithobacillus thiooxidansand metabolic construction of sulfur oxidation[D]. Central South University, 2014.
    [37] Yoshimoto A, Sato R. Studies on yeast sulfite reductase I. Purification and characterization[J]. Biochim Biophys Acta, 1968,153(3):555-575.
    [38] Rohwerder T, Sand W. Oxidation of Inorganic Sulfur Compounds in Acidophilic Prokaryotes[J]. Engineering in Life Sciences, 2007,7(4):301-309.
    [39] Foloppe N, Nilsson L. The glutaredoxin-C-P-Y-C-motif:influence of peripheral residues[J]. Structure, 2004,12(2):289-300.
    [40]彭加平,韦平和,周锡樑.半胱氨酸脱硫酶的生化特性及其脱硫作用机制[J].药物生物技术, 2011,(6):548-552.Peng J P, Wei P H, Zhou X L. Biochemical properties of cysteine desulfurase and its mechanism for the desulfuration of L-Cysteine[J].Pharmaceutical Biotechnology, 2011,(6):548-552.
    [41] Rother D, Henrich H J, Quentmeier A, et al. Novel Genes of the sox Gene Cluster, Mutagenesis of the Flavoprotein SoxF, and Evidence for a General Sulfur-Oxidizing System in Paracoccus pantotrophus GB17[J]. Journal of Bacteriology, 2001,183(15):4499-4508.
    [42] Hedderich R, Koch J, Linder D, et al. The heterodisulfide reductase from Methanobacterium thermoautotrophicum contains sequence motifs characteristic of pyridine-nucleotide-dependent thioredoxin reductases[J]. Febs Journal, 2010,225(1):253-261.
    [43]朱薇.嗜热古菌浸出黄铜矿的硫氧化活性与群落结构及硫形态关联性研究[D].中南大学, 2012.Zhu W. Research on the correlations among sulfur oxidation activity,community structure and sulfur speciation in bioleaching chalcopyrite with thermophilic archaea[D]. Central South University, 2012.
    [44] Chan L K, Morgankiss R M, Hanson T E. Functional analysis of three sulfide:quinone oxidoreductase homologs in Chlorobaculum tepidum[J]. Journal of Bacteriology, 2009,191(3):1026-1034.
    [45] Tan T, Liu C, Liu L, et al. Hydrogen sulfide formation as well as ethanol production in different media by cysND-and/or cysIJ-inactivated mutant strains of Zymomonas mobilis ZM4[J].Bioprocess Biosyst Eng, 2013,36(10):1363-1373.
    [46] Meiping W, Yunli J, Ziwei X, et al. Impairment of Sulfite Reductase Decreases Oxidative Stress Tolerance in Arabidopsis thaliana[J].Frontiers in Plant Science, 2016,7:1843-1852.
    [47]辛玉峰.异养细菌硫化物氧化途径及产物分析[D].山东大学, 2016.Xing Y F. Sulfide oxidation pathway and products anaiysis in heterotrophic bacteria[D]. Shandong University, 2016.
    [48] Sugio T, Mizunashi W, Inagaki K, et al. Purification and some properties of sulfur:ferric ion oxidoreductase from Thiobacillus ferrooxidans[J]. Journal of Bacteriology, 1987,169(11):4916-4922.
    [49] Santana M M, Gonzalez J M, Clara M I. Inferring pathways leading to organic-sulfur mineralization in the Bacillales[J]. CRC Critical Reviews in Microbiology, 2016,42(1):1-15.
    [50]季家举.嗜酸氧化亚铁硫杆菌异二硫化物还原酶Hdr C亚基的表达纯化及定点突变[D].中南大学, 2012.Ji J J. Expression, purification and site-directed mutagenesis of the HdrC subunit from heterodisulfide reductase in Acidithiobacillus ferrooxidans[D]. Central South University, 2012.
    [51] Rohwerder T, Sand W. The sulfane sulfur of persulfide is the actual substrate ofthe sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp[J]. Microbiology, 2003,149(7):1699-1710.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700