用户名: 密码: 验证码:
动态透平效率对有机朗肯循环系统性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of dynamic turbine efficiency on performance of organic Rankine cycle system
  • 作者:李鹏 ; 韩中合 ; 贾晓强 ; 梅中恺 ; 韩旭
  • 英文作者:LI Peng;HAN Zhonghe;JIA Xiaoqiang;MEI Zhongkai;HAN Xu;Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, North China Electric Power University;
  • 关键词:有机朗肯循环 ; 固定透平效率 ; 动态透平效率 ; 多目标优化
  • 英文关键词:organic Rankine cycle;;constant turbine efficiency;;dynamic turbine efficiency;;multi-objective optimization
  • 中文刊名:化工学报
  • 英文刊名:CIESC Journal
  • 机构:华北电力大学电站设备状态监测与控制教育部重点实验室;
  • 出版日期:2019-01-07 07:22
  • 出版单位:化工学报
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金项目(51306059);; 中央高校基本科研业务费专项资金项目(2017XS120)
  • 语种:中文;
  • 页:297-306
  • 页数:10
  • CN:11-1946/TQ
  • ISSN:0438-1157
  • 分类号:TP18;TK115
摘要
向心透平效率随运行参数的变化及工质种类的不同有较大差别,引入向心透平一维分析模型来计算透平效率,分析蒸发温度与冷凝温度对透平效率的影响,比较固定透平效率与动态透平效率有机朗肯循环(ORC)系统的热力性能与经济性能。采用非支配解排序遗传算法(NSGA-Ⅱ)优化ORC系统筛选出最优工质,确定最佳蒸发温度与冷凝温度。同时比较了不同热源温度下固定透平效率和动态透平效率ORC系统的最佳运行参数,分析了透平效率随热源温度的变化。结果表明:透平效率随蒸发温度的降低或者冷凝温度的升高而增大,采用动态透平效率后,系统净输出功随蒸发温度升高而增加趋势减缓,工质排序也发生了变化;对于固定透平效率与动态透平效率ORC系统,经多目标筛选后所确定的最优工质及最佳蒸发温度和冷凝温度均有一定差异,表明若采用固定透平效率会对工质筛选及参数优化造成一定误差;随着热源温度的升高,固定透平效率与动态透平效率ORC系统之间最佳蒸发温度与净输出功差异逐渐增大,说明热源温度越高,采用固定透平效率引起的误差越大。
        The centripetal turbine efficiency varies greatly with the change of operating parameters and the type of working fluid, and a one-dimensional analysis model of radial-inflow turbine is introduced. The effects of evaporation and condensation temperature on the turbine efficiency were investigated, and a comparative analysis on thermodynamic and economic performances of the organic Rankine cycle(ORC) system with constant turbine efficiency and dynamic turbine efficiency was presented. NSGA-Ⅱ is employed to conduct multi-objective optimization of ORC system, which was to select the optimal working fluid and determine the optimal evaporation and condensation temperature. Meanwhile, the optimal operating parameters of ORC system with constant and dynamic turbine efficiency were compared, and the variation of turbine efficiency with heat source temperature was studied. The results show that the turbine efficiency increases with the decrement of evaporation temperature or the increment of condensation temperature. After introducing dynamic turbine efficiency, the increment of net power output with increasing evaporation temperature slows down, and the sequence order of some working fluids changed.The optimal working fluid and the optimal operating parameters are different between ORC system with constant and dynamic turbine efficiency, which indicates that constant turbine efficiency will cause errors in selection of optimal working fluids and determination of operating parameters. As the heat source inlet temperature raises, the difference of optimal evaporation temperature and net power output between the ORC system with constant and dynamic turbine efficiency increases. The higher heat source inlet temperature is, the greater error caused by adopting constant turbine efficiency will be.
引文
[1] Saloux E, Sorin M, Nesreddine H, et al. Reconstruction procedure of the thermodynamic cycle of organic Rankine cycles(ORC)and selection of the most appropriate working fluid[J]. Applied Thermal Engineering, 2018, 129:628-635.
    [2]吴玉庭,赵英昆,雷标,等.冷却水流量对ORC系统性能影响的实验研究[J].化工学报, 2018, 69(6):2639-2645.Wu Y T, Zhao Y K, Lei B, et al. Effect of cooling water flow rate on power generation of organic Rankine cycle system[J]. CIESC Journal, 2018, 69(6):2639-2645.
    [3] Frutiger J, Andreasen J, Liu W, et al. Working fluid selection for organic Rankine cycles–impact of uncertainty of fluid properties[J]. Energy, 2016, 109:987-997.
    [4]许俊俊,罗向龙,王永真,等. ORC工质选择的多级非结构性模糊决策分析[J].化工学报, 2015, 66(3):1051-1058.Xu J J, Luo X L, Wang Y Z, et al. Optimum selection of ORC working fluid using multi-level fuzzy optimization and nonstructural fuzzy decision[J]. CIESC Journal, 2015, 66(3):1051-1058.
    [5] Wang E H, Zhang H G, Fan B Y, et al. Study of working fluid selection of organic Rankine cycle(ORC)for engine waste heat recovery[J]. Energy, 2011, 36(5):3406-3418.
    [6]顾煜炯,耿直,谢典.太阳能有机朗肯循环系统性能分析及综合评价[J].太阳能学报, 2018, 39(2):482-490.Gu Y J, Geng Z, Xie D. Performance analysis and comprehensive evaluation of organic Rankine cycle system driven by solar energy[J]. Acta Energiae Solaris Sinica, 2018, 39(2):482-490.
    [7] El-Emam R S, Dincer I. Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine cycle[J]. Applied Thermal Engineering, 2013, 59(1/2):435-444.
    [8] Li Y R, Du M T, Wu C M, et al. Economical evaluation and optimization of subcritical organic Rankine cycle based on temperature matching analysis[J]. Energy, 2014, 68(5):238-247.
    [9] Han Z H, Li P, Han X, et al. Thermo-economic performance analysis of a regenerative superheating organic Rankine cycle for waste heat recovery[J]. Energies, 2017, 10(10):1593.
    [10]王漫,王江峰,阎哲泉,等.有机工质低温余热发电系统多目标优化设计[J].动力工程学报, 2013, 33(4):387-392.Wang M, Wang J F, Yan Z Q, et al. Multi-objective optimization of low-temperature waste-heat ORC power generation systems[J].Journal of Chinese Society of Power Engineering, 2013, 33(5):387-392.
    [11]王华荣,徐进良.采用BP-GA算法的有机朗肯循环多目标优化[J].中国电机工程学报, 2016, 36(12):3168-3175.Wang H R, Xu J L. Multi-objective optimization for organic Rankine cycle using BP-GA algorithm[J]. Proceedings of the CSEE, 2016, 36(12):3168-3175.
    [12] Zhang S, Wang H, Tao G, et al. Performance comparison and parametric optimization of subcritical organic Rankine cycle(ORC)and transcritical power cycle system for low-temperature geothermal power generation[J]. Applied Energy, 2011, 88(8):2740-2754.
    [13]?zahi E, Tozlu A, Abu?o?lu A. Thermoeconomic multi-objective optimization of an organic Rankine cycle(ORC)adapted to an existing solid waste power plant[J]. Energy Conversion and Management, 2018, 168:308-319.
    [14] Rayegan R, Tao Y X. A procedure to select working fluids for solar organic Rankine cycles(ORCs)[J]. Renewable Energy, 2011,36(2):659-670.
    [15] Wang Y Z, Zhao J, Wang Y, et al. Multi-objective optimization and grey relational analysis on configurations of organic Rankine cycle[J]. Applied Thermal Engineering, 2017, 114:1355-1363.
    [16] Yekoladio P J, Bello-Ochende T, Meyer J P. Thermodynamic analysis and performance optimization of organic Rankine cycles for the conversion of low?to?moderate grade geothermal heat[J].International Journal of Energy Research, 2015, 39(9):1256-1271.
    [17] Garg P, Orosz M S. Economic optimization of organic Rankine cycle with pure fluids and mixtures for waste heat and solar applications using particle swarm optimization method[J]. Energy Conversion and Management, 2018, 165:649-668.
    [18] Sun J, Li W. Operation optimization of an organic Rankine cycle(ORC)heat recovery power plant[J]. Applied Thermal Engineering, 2011, 31(11):2032-2041.
    [19] Song J, Gu C W, Ren X. Influence of the radial-inflow turbine efficiency prediction on the design and analysis of the organic Rankine cycle(ORC)system[J]. Energy Conversion and Management, 2016, 123:308-316.
    [20] Song J, Gu C W, Ren X. Parametric design and off-design analysis of organic Rankine cycle(ORC)system[J]. Energy Conversion and Management, 2016, 112:157-165.
    [21] Zhai L, Xu G, Wen J, et al. An improved modeling for low-grade organic Rankine cycle coupled with optimization design of radialinflow turbine[J]. Energy Conversion and Management, 2017, 153:60-70.
    [22] Dong B, Xu G, Li T, et al. Parametric analysis of organic Rankine cycle based on a radial turbine for low-grade waste heat recovery[J]. Applied Thermal Engineering, 2017, 126:470-479.
    [23] Bejan A, Tsatsaronis G, Moran M, et al. Thermal Design and Optimization[M]. John Wiley&Sons, 1996.
    [24] Xiao L, Wu S Y, Yi T T, et al. Multi-objective optimization of evaporation and condensation temperatures for subcritical organic Rankine cycle[J]. Energy, 2015, 83:723-733.
    [25]李燕生,陆桂林.向心透平与离心压气机[M].北京:机械工业出版社, 1987.Li Y S, Lu G L. Radial-inflow Turbine and Centrifugal Compressor[M]. Beijing:China Machine Press, 1987.
    [26]舒士甄,朱力,柯玄龄,等.叶轮机械原理[M].北京:清华大学出版社, 1991.Shu S Z, Zhu L, Ke X L, et al. Fluid Mechanics and Thermodynamics of Turbomachinery[M]. Beijing:Tsinghua University Press, 1991.
    [27] Han Z H, Fan W, Zhao R C. Improved thermodynamic design of organic radial-inflow turbine and ORC system thermal performance analysis[J]. Energy Conversion and Management,2017, 150:259-268.
    [28]陈奇成,徐进良,苗政.中温热源驱动有机朗肯循环工质研究[J].中国电机工程学报, 2013, 33(32):1-7.Chen Q C, Xu J L, Miao Z. Working fluid selection for medium temperature organic Rankine cycle[J]. Proceedings of the CSEE,2013, 33(32):1-7.
    [29] Chen Q, Xu J, Chen H. A new design method for Organic Rankine cycles with constraint of inlet and outlet heat carrier fluid temperatures coupling with the heat source[J]. Applied Energy,2012, 98:562-573.
    [30] Jones A C. Design and test of a small, high pressure ratio radial turbine[J]. Journal of Turbomachinery, 1996, 118(2):362-370.
    [31] Feng Y, Hung T C, Greg K, et al. Thermoeconomic comparison between pure and mixture working fluids of organic Rankine cycles(ORCs)for low temperature waste heat recovery[J]. Energy Conversion and Management, 2015, 106:859-872.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700