用户名: 密码: 验证码:
Pr_(1-x)SrCo_(0.5)Ni_(0.5)O_(4+δ)阴极材料的合成及电化学性质
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and Electrochemical Properties of Pr_(1-x)SrCo_(0.5)Ni_(0.5)O_(4+δ) Cathode Materials
  • 作者:刘建伟 ; 孙丽萍 ; 赵辉 ; 霍丽华
  • 英文作者:LIU Jian-Wei;SUN Li-Ping;ZHAO Hui;HUO Li-Hua;Key laboratory of Functional Inorganic Material Chemistry, Ministry of Education,School of Chemistry and Materials Science, Heilongjiang University;
  • 关键词:中温固体氧化物燃料电池 ; 阴极材料 ; 氧还原反应 ; Pr1-xSrCo0.5Ni0.5O4+δ
  • 英文关键词:intermediate temperature solid oxide fuel cells;;cathode materials;;oxygen reduction reaction;;Pr1-xSrCo0.5Ni0.5O4+δ
  • 中文刊名:无机化学学报
  • 英文刊名:Chinese Journal of Inorganic Chemistry
  • 机构:黑龙江大学化学化工与材料学院功能无机材料化学教育部重点实验室;
  • 出版日期:2019-02-10
  • 出版单位:无机化学学报
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金(No.51872078,51372073);; 高等学校博士学科点专项科研基金(No.20132301110002);; 黑龙江省自然科学基金(No.E2016051);; 人事部留学人员科技活动择优资助项目(No.2014-240)资助
  • 语种:中文;
  • 页:71-79
  • 页数:9
  • CN:32-1185/O6
  • ISSN:1001-4861
  • 分类号:TM911.4
摘要
采用固相法合成中温固体氧化物燃料电池(IT-SOFC)阴极材料Pr_(1-x)SrCo_(0.5)Ni_(0.5)O_(4+δ)(P_(1-x)SCN,x=0.00,0.05,0.10,0.15,0.20),并对材料的物相、热膨胀系数(TEC)、电导率、电极的微观形貌以及电化学性质进行表征。XRD结果表明,该材料形成单一的K_2NiF_4结构,空间群为I4/mmm,并与电解质材料Ce_(0.9)Gd_(0.1)O_(1.95)(CGO)具有良好的高温化学相容性。碘量法分析表明随着Pr离子缺位浓度增加,P_(1-x)SCN中Co/Ni离子平均化合价随着x的增加而升高,至x=0.10后逐渐降低,而氧空位含量逐渐升高。引入Pr离子缺位使材料的电导率明显提高,其中P_(0.90)SCN在700℃空气中电导率值为309 S·cm~(-1)。TEC测试结果显示,随着Pr缺位的增加,热膨胀系数逐渐增大,最大值为1.51×10~(-5)K~(-1)。交流阻抗谱(EIS)测试结果表明,Pr缺位明显降低了电极的极化阻抗值,P_(0.90)SCN阴极在700℃空气中的极化阻抗值为0.21Ω·cm~2。电解质支撑NiO-CGO/CGO/P_(0.90)SCN单电池在700℃最大输出功率密度为197.8 mW·cm~(-2)。
        Intermediate temperature solid oxide fuel cells(IT-SOFCs)cathode materials Pr_(1-x)SrCo_(0.5)Ni_(0.5)O_(4+δ)(P_(1-x)SCN,x=0.0,0.05,0.10,0.15,0.20)are synthesized by solid-state reaction method.The phase,thermal expansion coefficient(TEC),conductivity,electrode morphology and electrochemical properties are characterized.XRD results show that the oxides crystallize in a single K_2NiF_4structure with a space group of I4/mmm.The cathode materials exhibited good high temperature chemical compatibility with electrolyte Ce_(0.9)Gd_(0.1)O_(1.95)(CGO).Iodometry analysis shows that with the increase of Pr~(3+)vacancy concentration,the average valence of Co/Ni ions in oxides increased stepwise with the increase of x and then decreased after x=0.10,while the content of oxygen vacancy increased gradually.Introducing Pr~(3+)vacancy significantly improved the conductivity of the material.The highest conductivity of 309 S·cm~(-1)was found in P_(0.90)SCN at 700℃in air.The thermal expansion measurement results show that TEC increased with the increase of Pr~(3+)deficiency,and the maximum value is 1.51×10~(-5)K~(-1).Electrochemical impedance spectroscopy(EIS)measurements show that Pr vacancy significantly reduced the polarization resistance of the electrode,and the smallest polarization resistance of 0.21Ω·cm~2was obtained on P_(0.90)SCN cathode at700℃in air.The maximum output power density of electrolyte supported single cell NiO-CGO/CGO/P_(0.90)SCN was197.8 mW·cm~(-2)at 700℃.
引文
[1] Li Q, Sun L P, Huo L H, et al. J. Power Sources, 2011,196:1712-1716
    [2] FAN Yu-Hang(范宇航), SUN Li-Ping(孙丽萍), HUO Li-Hua(霍丽华),et al. Chinese J. Inorg. Chem.(无机化学学报),2016,32(10):1730-1738
    [3] Shen J, Yang G M, Zhang Z B, et al. J. Mater. Chem. A,2016,4(27):10641-10649
    [4] KimY B, Holme T P, Gür T M, et al. Adv. Funct. Mater.,2011,21:4684-4690
    [5] Sharma R K, Djurado E. J. Mater. Chem. A, 2018,6(23):10787-10802
    [6] Kaluzhskikha M S, Kazakova S M, Mazoa G N, et al. J. Solid State Chem., 2011,184:698-704
    [7] SHENG Shuang(盛双), ZHAO Hui(赵辉), HAO Ju-Hong(郝举红), et al. Chinese J. Inorg. Chem.(无机化学学报), 2016,32(12):2143-2150
    [8] Gao Z, Mogni L V, Miller E C, et al. Energy Environ. Sci.,2016,9:1602-1644
    [9] CAO Yue(曹悦), GU Hai-Tao(顾海涛),CHEN Han(陈涵),et al. J. Inorg. Mater.(无机材料学报), 2010,25(7):738-742
    [10]Mazo G N, Mamaev Y A, Galin M Z, et al. Inorg. Mater.,2011,47:1218-1226
    [11]Kharton V V, Viskup A P, Kovalevsky A V, et al. Solid State Ionics, 2001,143:337-353
    [12]Khandale A P, Bhoga S S. J. Alloys Compd., 2009,509:6955-6961
    [13]Soorie M, Skinner S J. Solid State Ionic, 2006,177:2081-2086
    [14]Li Q, Zhao H, Huo L H, et al. Electrochem. Commun.,2007,9:1508-1512
    [15]Ding X F, Kong X, Jiang J G, et al. Int. J. Hydrogen Energy,2009,34:6869-6975
    [16]Flura A, Dru S, Nicollet C, et al. J. Solid State Chem., 2015,228:189-198
    [17]Nie H W, Wen T L, Wang S R, et al. Solid State Ionic,2006,177:1929-1932
    [18]Zhao H, Li Q, Sun L P. Sci. China-Chem., 2011,54:898-910
    [19]Munnings C N, Skinner S J, Amow G, et al. Solid State Ionics, 2005,176:1895-1901
    [20]Wang J K, Zhou J, Fan W W, et al. J. Solid State Chem.,2017,247:24-30
    [21]Hu Y, Bouffanais Y, Almar L, et al. Int. J. Hydrogen Energy,2013,38:3064-3072
    [22]Zharikova E V, Rozova M G, Kazakov S M, et al. Solid State Commun., 2016,245:31-35
    [23]Boulahya K, Gil D M, Hassan M, et al. Dalton Trans., 2017,46(4):1283-1289
    [24]Laguna-Bercero M A, Kinadjan N, Sayers R, et al. Fuel Cells,2011,1:102-107
    [25]Riza F, Ftikos C. J. Eur. Ceram. Soc., 2007,27:571-573
    [26]Istomin S Y, Karakulina O M, Rozova M G, et al. RSC Adv.,2016,6:33951-33958
    [27]Zhao F, Wang X F, Wang Z Y, et al. Solid State Ionics,2008,179:1450-1453
    [28]Laguna-Bercero M A, Luebbe H, Silva J, et al. Fuel Cells,2015,15:98-104
    [29]Lalanne C, Prosperi G, Bassat J M, et al. J. Power Sources,2008,185:1218-1224
    [30]Zhao H, Mauvy F, Lalanne C, et al. Solid State Ionic, 2008,179:2000-2005
    [31]Ferkhi M, Ahmed Yahia H. Mater. Res. Bull., 2016,83:268-274
    [32]Hassen A, Ali A I, Kim B G, et al. American Journal of Condensed Matter Physics, 2012,2(4):93-100
    [33]Song H S, Min J H, Kim J, et al. J. Power Sources, 2009,191:269-274
    [34]JIANG Tao(姜涛), DING Tie-Zhu(丁铁柱), CHAO LuoMeng(潮洛蒙), et al. J. Funct. Mater.(功能材料), 2008,39:521-523
    [35]Chen Y, Zhang L, Niu B B, et al. Int. J. Hydrogen Energy,2017,42:6231-6242
    [36]Jin F J, Xu H W, Long W, et al. J. Power Sources, 2013,243:10-18
    [37]Dai N N, Feng J, Wang Z H, et al. J. Mater. Chem. A, 2013,1:14147-14153
    [38]Somacescu S, Florea M, Osiceanu P, et al. J. Nanopart. Res.,2015,17:426(16 Pages)
    [39]Yang Z B, Han M F, Zhu P Y, et al. Int. J. Hydrogen Energy, 2011,36:9162-9168
    [40]Pang S L, Jiang X N, Li X N, et al. J. Power Sources, 2012,204:53-59
    [41]Fu D W, Jin F J, He T M. J. Power Sources, 2016,313:134-141
    [42]Jiang X N, Shi Y C, Zhou W L, et al. J. Power Sources,2014,272:371-377
    [43]Li Q, Zeng X, Sun L P, et al. Int. J. Hydrogen Energy, 2012,37:2552-2558
    [44]Kim J D, Kim G D, Moon J W, et al. Solid State Ionics,2001,143(3):379-389
    [45]Souza R A D, Kilner J A. Solid State Ionics, 1998,106(3):175-187
    [46]Souza R A D, Kilner J A. Solid State Ionics, 1999,126(1):153-161
    [47]Gao Z, Liu X M, Bergman B. J. Power Sources, 2011,196:9195-9203
    [48]Gao L, Li Q, Sun L P, et al. J. Power Sources, 2017,371:86-95

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700