用户名: 密码: 验证码:
武汉市三类不同大气污染过程下大气污染物特征及潜在源区分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of Air Pollutants and their Potential Source in Three Types of Pollution Episodes in Wuhan
  • 作者:王红磊 ; 沈利娟 ; 施双双 ; 卢文 ; 刘安康
  • 英文作者:WANG Honglei;SHEN Lijuan;SHI Shuangshuang;LU Wen;LIU Ankang;Key Laboratory for Aerosol-Cloud Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology;Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention;
  • 关键词:武汉 ; 沙尘 ; ; 秸秆燃烧 ; 潜在源区
  • 英文关键词:Wuhan;;dust storm;;haze;;straw burning;;potential source
  • 中文刊名:三峡生态环境监测
  • 英文刊名:Ecology and Environmental Monitoring of Three Gorges
  • 机构:南京信息工程大学中国气象局气溶胶-云-降水重点开放实验室;上海市大气颗粒物污染防治重点实验室;
  • 出版日期:2019-06-17
  • 出版单位:三峡生态环境监测
  • 年:2019
  • 期:02
  • 基金:国家重点研发计划项目(2016YFA0602003);; 上海市大气颗粒物污染防治重点实验室开放课题(FDLAP18006)
  • 语种:中文;
  • 页:31-43
  • 页数:13
  • CN:50-1214/X
  • ISSN:2096-2347
  • 分类号:X51
摘要
为了探讨武汉市不同类型大气污染过程中大气污染物变化特征,分析对比了沙尘、秸秆燃烧和霾污染过程中大气污染物(SO_2,NO_2,CO,O_3,PM_(2.5)和PM_(10))的变化特征及其影响因素。使用HYSPLIT模式计算了不同类型污染过程中气团轨迹,并利用潜在源区贡献(potential source contribution function,PSCF)和浓度权重轨迹(concentration weighted trajectory,CWT)分析方法,揭示了武汉市不同类型污染过程中大气污染物的潜在源区分布及其贡献特性。结果表明,不同类型污染下大气污染物变化不同。沙尘天主要以PM_(10)污染为主,平均浓度为408.8μg/m~3,是干净天的5.9倍,PM_(2.5)/PM_(10)仅为29%。霾过程中主要以PM_(2.5)污染为主,平均浓度为182.8μg/m~3,是干净天的3.7倍,PM_(2.5)/PM_(10)为90.4%。秸秆燃烧过程中大气污染物浓度均不同程度地增加,其中PM_(2.5)、PM_(10)和SO_2的浓度分别为100.2μg/m~3,155.4μg/m~3和23.7μg/m~3,是干净天的1.8倍,1.6倍和1.6倍。表明,不同类型污染下大气污染物的日变化不同,不同类型污染过程中大气污染物的潜在源区差异较大。沙尘期间大气污染物的主要潜在源区为安徽、河南南部、沙尘源区的内蒙古和甘肃等地区。霾过程中大气污染物的主要潜在源区为湖南东北部、湖北东部、安徽西南部、浙江西部、江西北部和河南南部。秸秆燃烧过程中大气污染物的主要潜在源区为安徽、江苏西南部和河南东南部。
        Air pollutants(SO_2, NO_2, CO, O_3, PM_(2.5), and PM_(10)) and their impact factors were analyzed in order to investigate the pollution characteristics under different pollution types. HYSPLIT model was uesd to calculate the air mass trajectories for different types of pollution episodes. Additionally, the potential source distributions and their contribution fractions for air pollutants were derived by using the methods of the potential source contribution function(PSCF) and the concentration weighted trajectory(CWT). Results show that air pollutants vary with different types of pollution episodes. During the dust pollution episode, PM_(10) was dominant, with an average concentration of 408.8 μg/m~3, which was 5.9 times the value of that on clean days. The PM_(2.5)/PM_(10) ratio declined to 29%. During the haze episode, the pollution was featured by PM_(2.5), with an average concentration of 182.8 μg/m~3,which was 3.7 times the value of that on clean days. The PM_(2.5)/PM_(10) ratio rates increased to 90.4%. During the straw burning episode, the concentration of all pollutants under consideration increased at different extent. The average concentrations of PM_(2.5), PM_(10), and SO_2 were 100.2 μg/m~3, 155.4 μg/m~3, and 23.7 μg/m~3, respectively,which were 1.8, 1.6, and 1.6 times of those on clean days. The diurnal variations of the air pollutants and their potential sources varied during different pollution episodes. The major potential source region was located at Anhui, southern Henan, inner Mongolia, and Gansu for the dust episode, and northeastern Hunan, eastern Hubei,southwestern Anhui, western Zhejiang, northern Jiangxi, and southern Henan for the haze episode, as well as at Anhui, southwestern Jiangsu, and southeastern Henan for the straw burning episode.
引文
[1]刘晓慧,朱彬,王红磊,等.长江三角洲地区1980~2009年灰霾分布特征及影响因子[J].中国环境科学,2013,33(11):1929-1936.
    [2]DENTENER F J,CARMICHAEL G R,ZHANG Y,et al.Role of mineral aerosol as a reactive surface in the global troposphere[J].Journal of Geophysical Research,1996,101(D17):22869-22889.
    [3]DING A J,HUANG X,NIE W,et al.Black carbon enhances haze pollution in megacities in China[J].Geophysical Research Letters,2016,43(6):2873-2879.
    [4]FU Q Y,ZHUANG G S,WANG J,et al.Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta,China[J].Atmospheric Environment,2008,42(9):2023-2036.
    [5]吴兑.近十年中国灰霾天气研究综述[J].环境科学学报,2012,32(2):257-269.
    [6]张小曳,孙俊英,王亚强,等.我国雾-霾成因及其治理的思考[J].科学通报,2013,58(13):1178-1187.
    [7]CAO J J,WANG Q Y,CHOW J C,et al.Impacts of aerosol compositions on visibility impairment in Xi’an,China[J].Atmospheric Environment,2012,59:559-566.
    [8]HUANG R J,ZHANG Y,BOZZETTI C,et al.High secondary aerosol contribution to particulate pollution during haze events in China[J].Nature,2014,514(7521):218-222.
    [9]WANG H,AN J,SHEN L,et al.Mechanism for the formation and microphysical characteristics of submicron aerosol during heavy haze pollution episode in the Yangtze River Delta,China[J].Science of the Total Environment,2014,490:501-508.
    [10]马浩平,孙明虎,张志珍.维坊城区典型区域PM10和PM2.5质量浓度变化特征[J].中国环境管理干部学院学报,2018,28(2):66-69.
    [11]白莹莹,张德军,杨世琦,等.川渝地区雾霾时空分布特征及影响因子分析[J].西南师范大学学报(自然科学版),2018,43(11):112-119.
    [12]马德栗,李兰,鞠英芹.湖北省霾日数气候特征及夏季典型霾过程气象因子分析[J].环境科学与技术,2015,38(11):148-153.
    [13]陈楠,许可,曹中美,等.湖北大气颗粒物污染水平及污染物相关性研究[J].环境科学与技术,2016,39(9):194-198.
    [14]廖玉芳,吴贤云,潘志祥,等.1961-2006年湖南省霾现象的变化特征[J].气候变化研究进展,2007,3(5):260-265.
    [15]李恬,赵天良,杨晓霞,等.近53年山东省霾季节性特征的年代际变异[J].生态环境学报,2014,23(9):1432-1437.
    [16]ZHAO T L,LIU D,ZHENG X B,et al.Revealed variations of air quality in industrial development over a remote plateau of Southwest China:An application of atmospheric visibility data[J].Meteorology and Atmospheric Physics,2017,129(6):659-667.
    [17]CHENG H R,GONG W,WANG Z W,et al.Ionic composition of submicron particles(PM1.0)during the longlasting haze period in January 2013 in Wuhan,central China[J].Journal of Environmental Sciences,2014,26(4):810-817.
    [18]孙焰,祁士华,张莉,等.武汉市洪山区夏季PM2.5浓度、水溶性离子与PAHs成分特征及来源分析[J].环境科学,2016,37(10):3714-3722.
    [19]张帆,成海容,王祖武,等.武汉秋季灰霾和非灰霾天气细颗粒物PM2.5中水溶性离子的特征[J].中国粉体技术,2013,19(5):31-33.
    [20]HE K,ZHAO Q,MA Y,et al.Spatial and seasonal variability of PM2.5acidity at two Chinese megacities:Insights into the formation of secondary inorganic aerosols[J].Atmospheric Chemistry and Physics,2012,12(3):1377-1395.
    [21]WANG S S,NAN J L,SHI C Z,et al.Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai,China[J].Scientific Reports,2015,5:1-13.
    [22]ZHANG H F,YE X N,CHENG T T,et al.A laboratory study of agricultural crop residue combustion in China:Emission factors and emission inventory[J].Atmospheric Environment,2008,42(36):8432-8441.
    [23]杨元建,傅云飞,吴必文,等.秸秆焚烧对中国东部气溶胶时空格局的影响[J].大气与环境光学学报,2013,8(4):241-252.
    [24]尹聪,朱彬,曹云昌,等.秸秆焚烧影响南京空气质量的成因探讨[J].中国环境科学,2011,31(2):207-213.
    [25]DUAN F K,LIU X D,YU T,et al.Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing[J].Atmospheric Environment,2004,38(9):1275-1282.
    [26]朱佳雷,王体健,邓君俊,等.长三角地区秸秆焚烧污染物排放清单及其在重霾污染天气模拟中的应用[J].环境科学学报,2012,32(12):3045-3055.
    [27]伍德侠,魏庆农,魏健琍,等.秸秆焚烧期的碳黑气溶胶观测及研究[J].环境科学,2008,29(12):3304-3309.
    [28]唐喜斌,黄成,楼晟荣,等.长三角地区秸秆燃烧排放因子与颗粒物成分谱研究[J].环境科学,2014,35(5):1623-1632.
    [29]FANG M,ZHENG M,WANG F,et al.The long-range transport of aerosols from northern China to Hong Kong-a multi-technique study[J].Atmospheric Environment,1999,33(11):1803-1817.
    [30]LIN T H.Long-range transport of yellow sand to Taiwan in spring 2000:Observed evidence and simulation[J].Atmospheric Environment,2001,35(34):5873-5882.
    [31]陈勇航,毛晓琴,黄建平,等.一次强沙尘输送过程中气溶胶垂直分布特征研究[J].中国环境科学,2009,29(5):449-454.
    [32]王式功,王金艳,周自江,等.中国沙尘天气的区域特征[J].地理学报,2003,58(2):193-200.
    [33]HAYWOOD J,BOUCHER O.Estimates of the direct and indirect radiative forcing due to tropospheric aerosols:Areview[J].Reviews of geophysics,2000,38(4):513-543.
    [34]徐文帅,李云婷,孙瑞雯,等.典型沙尘回流天气过程对北京市空气质量影响的特征分析[J].环境科学学报,2014,34(2):297-302.
    [35]沈利娟,李莉,吕升,等.2013年夏季嘉兴市一次光化学事件的观测分析[J].环境科学,2014,35(5):1662-1670.
    [36]STEIN A F,DRAXLER R R,ROLPH G D,et al.NOAA’s HYSPLIT atmospheric transport and dispersion modeling system[J].Bulletin of the American Meteorological Society,2015,96(12):2059-2077.
    [37]王艳,柴发合,王永红,等.长江三角洲地区大气污染物输送规律研究[J].环境科学,2008,29(5):1430-1435.
    [38]ASHBAUGH L L,MALM W C,SADEH W Z.A residence time probability analysis of sulfur concentrations at Grand Canyon National Park[J].Atmospheric Environment,1985,19(8):1263-1270.
    [39]刘浪,张文杰,杜世勇,等.利用SPAMS分析北京市硫酸盐、硝酸盐和铵盐季节变化特征及潜在源区分布[J].环境科学,2016,37(5):1609-1618.
    [40]POLISSAR A V,HOPKE P K,HARRIS J M.Source regions for atmospheric aerosol measured at Barrow,Alaska[J].Environmental Science&Technology,2001,35(21):4214-4226.
    [41]任传斌,吴立新,张媛媛,等.北京城区PM2.5输送途径与潜在源区贡献的四季差异分析[J].中国环境科学,2016,36(9):2591-2598.
    [42]康玲,孙鑫,侯婷,等.内蒙古地区沙尘暴的分布特征[J].中国沙漠,2010,30(2):400-406.
    [43]安俊琳,王跃思,李昕,等.北京大气中SO2、NOx、CO和O3体积分数变化分析[J].生态环境,2007,16(6):1585-1589.
    [44]朱彤,尚静,赵德峰.大气复合污染及灰霾形成中非均相化学过程的作用[J].中国科学:化学,2010,40(12):1731-1740.
    [45]LI C,MCLINDEN C,FIOLETOV V,et al.India Is overtaking China as the World’s largest emitter of anthropogenic Sulfur Dioxide[J].Scientific Reports,2017,7(1):1-7.
    (1)http://106.37.208.233:20035/
    (1)http://ready.arl.noaa.gov/HYSPLIT.php
    (1)http://www.zhb.gov.cn/hjzl/dqhj/jgjsjcbg/。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700