用户名: 密码: 验证码:
三峡库区紫色土坡耕地表土的可蚀性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Topsoil Erodibility on Purple Soil Sloping Farmlands in Three Gorges Reservoir Area
  • 作者:徐文秀 ; 韦杰 ; 李进林 ; 鲍玉海 ; 李沙沙
  • 英文作者:Xu Wenxiu;Wei Jie;Li Jinlin;Bao Yuhai;Li Shasha;School of Geography and Tourism, Chongqing Normal University;Chongqing Key Laboratory of Surface Process and Environment Remote Sensing in the Three Gorges Reservoir Area;Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences;
  • 关键词:土壤可蚀性 ; 紫色土 ; 坡耕地 ; 三峡库区
  • 英文关键词:soil erodibility;;purple soil;;sloping farmlands;;the Three Gorges reservoir area
  • 中文刊名:水土保持通报
  • 英文刊名:Bulletin of Soil and Water Conservation
  • 机构:重庆师范大学地理与旅游学院;三峡库区地表过程与环境遥感重庆市重点实验室;中国科学院水利部成都山地灾害与环境研究所山地表生过程与生态调控重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:水土保持通报
  • 年:2019
  • 期:03
  • 基金:国家自然科学基金项目“紫色土坡耕地土石复合坎结构与水土保持效应研究”(41471234);; 重庆市教委科技项目(KJZD-K201800502)
  • 语种:中文;
  • 页:13-17+24
  • 页数:6
  • CN:61-1094/X
  • ISSN:1000-288X
  • 分类号:S157.1
摘要
[目的]揭示三峡库区紫色土坡耕地表土可蚀性特征,为水土保持措施空间配置优化设计提供依据。[方法]以无措施坡耕地为对照,选取紫色土区埂坎、水平沟坡耕地为研究对象,采集表土测试机械组成和有机质含量,利用EPIC(environmental policy-integrated climate)模型计算可蚀性指标,比较3种坡耕地表土的颗粒组成、有机质含量和可蚀性指标。[结果]①紫色土坡耕地表土粉粒含量较高,黏粒含量较低,分别为45.78%~76.29%和6.05%~10.58%。坡面尺度内,埂坎坡耕地上地块下坡位表土粉粒含量明显高于紧邻的下地块上坡位,砂粒含量则相反。地块尺度内,上坡位砂粒含量较高,中下坡位粉粒含量和黏粒含量较高。②紫色土坡耕地表土有机质含量为0.61%~1.48%。坡面尺度内,埂坎坡耕地上地块下坡位表土有机质含量明显高于紧邻的下地块上坡位。地块尺度内,有机质主要在中下坡位富集。③紫色土坡耕地表土可蚀性K值介于0.043 8~0.059 2之间。坡面尺度内,埂坎和水平沟坡耕地下地块上坡位表土可蚀性K值分别比紧邻的上地块下坡位低16.55%和6.30%。地块尺度内,中下坡位的表土可蚀性K值较大,且最高值出现在坡面的3/4处。表土可蚀性K值与粉粒含量呈极显著正相关(p<0.01),与砂粒含量呈极显著负相关(p<0.01)。[结论]三峡库区紫色土坡耕地表土抗蚀能力较弱,埂坎和水平沟均具有较好的水土保持效果,对提高坡耕地抗蚀性具有一定作用。
        [Objective] The erodibility of topsoil on purple soil sloping farmlands in the Three Gorges reservoir area was investigated in order to provide a basis for spatial allocation design of soil conservation measures. [Methods] Two different kinds of purple soil sloping farmlands with soil bunds, horizontal ditch were selected, and topsoil was collected to determine the particle composition and organic matter content. Then the soil erodibility index was calculated by the environmental policy-integrated climate(EPIC) model, as to compare the particle composition, organic matter content and erodibility of the topsoil on purple soil sloping farmlands with different soil conservations. [Results] ① The content of silty particle in the topsoil of purple soil sloping farmlands was higher, and ranged from 45.78% to 76.29%, while the content of clay particle was relatively lower, ranged from 6.05% to 10.58%. At the slope scale, silty particle content at the lower slope of the upper field was significantly higher than that at the uphill position of the adjacent downhill plot, while sandy particle content was the opposite. At the field plot scale, sandy particle content was higher in the upper slope, and silty particle content and clay particle content were both higher in the middle and lower slope. ② The content of soil organic matter in topsoil on purple soil sloping farmlands ranged from 0.61% to 1.48%. At the slope scale, the organic matter content in topsoil of the lower slope of the upper field was significantly higher than that in the upper slope of the adjacent downhill plot. At the field plot scale, the organic matter content in the topsoil was mainly concentrated in the middle and lower slope. ③ The erodibility K value of topsoil on purple soil sloping farmlands was ranged from 0.043 8 to 0.059 2. At the slope scale, the erodibility K value at the upper slope of the lower slope of ridge and horizontal gully farmland was 16.55% and 6.30% lower than that at the lower slope of the adjacent upper field, respectively. At the field plot scale, the erodibility K value was higher in the middle and lower slope. The highest value occurred at the 3/4 of the slope. The erodibility K value of topsoil was positively related to silty particle content(p<0.01), while negatively related to sandy particle content(p<0.01). [Conclusion] The anti-erosion capability of topsoil on purple soil sloping farmlands in the Three Gorges reservoir area is weak. Both soil bund and horizontal ditch have good soil conservation effects on purple soil sloping farmlands, which play an important role in improving the capability of soil anti-erosion.
引文
[1]Borselli L,Torri D,Poesen J,et al.A robust algorithm for estimating soil erodibility in different climates[J].Catena,2012,97(5):85-94.
    [2]Yang Xihua,Gray J,Chapman G,et al.Digital mapping of soil erodibility for water erosion in New South Wales,Australia[J].Soil Research,2017,56(2):158-170.
    [3]王秋霞,张勇,丁树文,等.花岗岩崩岗区土壤可蚀性因子估算及其空间变化特征[J].中国水土保持科学,2016,14(4):1-8.
    [4]Larionov G A,Bushueva O G,Gorobets A V,et al.Experimental study of factors affecting soil erodibility[J].Eurasian Soil Science,2018,51(3):336-344.
    [5]谢红霞,陈琼,李锦龙,等.长沙市东郊不同母质发育耕型红壤的可蚀性因子K值估算[J].水土保持通报,2012,32(3):133-135.
    [6]骆东奇,侯春霞,魏朝富,等.紫色土团聚体抗蚀特征研究[J].水土保持学报,2003,17(2):20-23.
    [7]杨帆,张洪江,程金花,等.北京市延庆县不同土地利用方式下的土壤可蚀性研究[J].水土保持通报,2013,33(6):19-22.
    [8]黄晓强,赵云杰,信忠保,等.北京山区典型土地利用方式对土壤理化性质及可蚀性的影响[J].水土保持研究,2015,22(1):5-10.
    [9]Guerra A.The effect of organic matter content on soil erosion in simulated rainfall experiments in W.Sussex,UK[J].Soil Use and Management,1994,10(2):60-64.
    [10]Bonilla C A,Johnson O I.Soil erodibility mapping and its correlation with soil properties in Central Chile[J].Geoderma,2012(189/190):116-123.
    [11]文安邦,齐永青,汪阳春,等.三峡地区侵蚀泥沙的137 Cs法研究[J].水土保持学报,2005,19(2):33-36.
    [12]韦杰,鲍玉海,金慧芳,等.三峡库区坡耕地有限顺坡耕作模式及减蚀效应[J].灌溉排水学报,2012,31(6):45-48.
    [13]倪九派,魏朝富,高明,等.三峡库区坡耕地土壤养分流失的实验研究[J].水土保持学报,2008,22(5):38-42.
    [14]史东梅,蒋光毅,蒋平,等.土壤侵蚀因素对紫色丘陵区坡耕地耕层质量影响[J].农业工程学报,2017,33(13):270-279.
    [15]周洋,姜敏,李梦雨,等.湘中丘陵区紫色土坡耕地水土保持措施效益的试验研究[J].水土保持学报,2017,31(6):134-138.
    [16]Williams J R,Renard K G,Dyke P T.EPIC:a new method for assessing erosion’s effect on soil productivity[J].Journal of Soil&Water Conservation,1983,38(5):381-383.
    [17]姜坤,秦海龙,卢瑛,等.广东省不同母质发育土壤颗粒分布的分形维数特征[J].水土保持学报,2016,30(6):319-324.
    [18]Wang Li,Shi Zhihua,Wang Junguang,et al.Rainfall kinetic energy controlling erosion processes and sediment sorting on steep hillslopes:A case study of clay loam soil from the Loess Plateau,China[J].Journal of Hydrology,2014,512:168-176.
    [19]Slattery M C,Burt T P.Particle size characteristics of suspended sediment in hillslope runoff and stream flow[J].Earth Surface Processes&Landforms,2015,22(8):705-719.
    [20]郑良勇,李占斌,李鹏,等.坡面侵蚀泥沙来源立体分布研究[J].水土保持学报,2012,26(3):58-61.
    [21]史东梅,陈正发,蒋光毅,等.紫色丘陵区几种土壤可蚀性K值估算方法的比较[J].北京林业大学学报,2012,34(1):32-38.
    [22]He Xiubin,Bao Yuhai,Nan Hongwei,et al.Tillage pedogenesis of purple soils in southwestern China[J].Journal of Mountain Science,2009,6(2):205-210.
    [23]袁勇,高华端,孙泉忠.黔中喀斯特地区不同地类土壤侵蚀研究[J].中国水土保持,2010(6):50-51.
    [24]翟子宁,王克勤,苏备,等.松华坝水源区不同土地利用类型土壤可蚀性研究[J].西南林业大学学报,2016,36(5):118-124.
    [25]许晓鸿,隋媛媛,张瑜,等.东北丘陵漫岗区坡耕地土壤抗蚀性研究[J].水土保持通报,2012,32(4):32-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700