用户名: 密码: 验证码:
短波红外光谱技术在矿床勘查中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of Short Wavelength Infrared Technique in Exploration of Mineral Deposits:A Review
  • 作者:田丰 ; 冷成彪 ; 张兴春 ; 田振东 ; 张伟 ; 郭剑衡
  • 英文作者:TIAN Feng;LENG Cheng-biao;ZHANG Xing-chun;TIAN Zhen-dong;ZHANG Wei;GUO Jian-heng;State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences;University of Chinese Academy of Sciences;State key Laboratory of Naclear Resources and Environment,East China University of Technology;
  • 关键词:地质学 ; 围岩蚀变 ; 短波红外光谱 ; 热液矿床 ; 矿床勘查 ; 找矿指标
  • 英文关键词:geology;;wall rock alteration;;short-wave infrared(SWIR);;hydrothermal ore deposit;;exploration of deposit;;prospecting index
  • 中文刊名:矿物岩石地球化学通报
  • 英文刊名:Bulletin of Mineralogy,Petrology and Geochemistry
  • 机构:中国科学院地球化学研究所矿床地球化学国家重点实验室;中国科学院大学;东华理工大学核资源与环境国家重点实验室;
  • 出版日期:2019-01-28 11:43
  • 出版单位:矿物岩石地球化学通报
  • 年:2019
  • 期:03
  • 基金:国家重点研发计划项目(2018YFC0603505);; 国家自然科学基金资助项目(41673051)
  • 语种:中文;
  • 页:199-207
  • 页数:9
  • CN:52-1102/P
  • ISSN:1007-2802
  • 分类号:P624
摘要
短波红外光谱(SWIR)技术是近年来从国外引入的一种新型矿床勘查研究手段,该技术具有快速、高效、低成本和高灵敏度等优点,已被广泛应用于矿床勘查研究中。本文对SWIR技术的基本原理、发展历程和常用仪器软件进行了较为详尽的介绍,重点介绍了其在矿床勘查中的两个主要应用方向:蚀变矿物填图和成矿地质环境反演。前者为该技术手段的核心功能,通过SWIR波段对特定矿物进行识别,确定蚀变矿物的分布情况,快速划分蚀变分带,以便缩小找矿范围,从而提升找矿效率和准确率;后者是利用目标蚀变矿物反射光谱特征参数(如波长吸收位置、结晶度等)的规律性变化,反演成矿的地质环境,确定热液中心,提供找矿指标。最后,初步提出了短波红外光谱技术的发展趋势。
        Short-wave infrared( SWIR) technology is a new tool of mineral resource exploration introduced by foreign countries in recent years. This technology is characterized by high efficiency,rapidity,sensitivity,low cost and environmental protection. Therefore,it is widely used in mineral deposit research and prospecting exploration. This paper briefly introduces the basic principles of short-wave infrared spectroscopy and summarizes the characteristics,development and application of this technique. Two main applications of this technique in mineral deposit exploration are highlighted. One application is altered mineral mapping,using the SWIR band to identify specific altered minerals,with which the alteration zone can be divided and the prospecting efficiency can be improved. The other application is utilizing systemic changes of mineral reflection spectral characteristic parameters( such as specific wavelength absorption peak position,crystallinity,etc.) to represent the geological environment of mineralization,locate the hydrothermal or mineralization center,and provide prospecting indicators. Finally,the development trend of SWIR technique is proposed in this paper.
引文
Berger B R.1998.Hydrothermal alteration.In:Marshall C P,Fairbridge R W(eds.).Geochemistry.Encyclopedia of Earth Science.Netherlands:Springer
    Chang Z,Yang Z.2012.Evaluation of inter-instrument variations among short wavelength infrared(SWIR)devices.Economic Geology,107(7):1479-1488
    Chang Z S,Hedenquist J W,White N C,Cooke D R,Roach M,Deyell C L,Garcia J Jr,Gemmell J B,Mc Knight S,Cuison A L.2011.Exploration tools for linked porphyry and epithermal deposits:Example from the mankayan intrusion-centered Cu-Au district,Luzon,Philippines.Economic Geology,106(8):1365-1398
    Clark R N,King T V V,Klejwa M,Swayze G A,Vergo N.1990.High spectral resolution reflectance spectroscopy of minerals.Journal of Geophysical Research,95(B8):12653-12680
    Clark R N.1999.Spectroscopy of rocks and minerals,and principles of spectroscopy.In:Rencz A(ed.).Manual of Remote Sensing,Volume 3,Remote Sensing for Earth Sciences.New York:John Wiley and Sons
    Clark R N,Swayze G A,Wise R K,Livo E,Hoefen T M,Kokaly R F,Sutley S J.2003.USGS Digital Spectral Library splib05a.U.S.Geological Survey,Open File Report 03-395.U.S.Geological Survey
    Clark R N,Swayze G A,Wise R A,Livo K E,Hoefen T M,Kokaly RF,Sutley S J.2007.USGS digital spectral library splib06a.Reston,VA:U.S.Geological Survey
    Crowley J K,Williams D E,Hammarstrom J M,Piatak N,Chou I M,Mars J C.2003.Spectral reflectance properties(0.4-2.5μm)of secondary Fe-oxide,Fe-hydroxide,and Fe-sulphate-hydrate minerals associated with sulphide-bearing mine wastes.Geochemistry:Exploration,Environment,Analysis,3(3):219-228
    Duba D,Williams-Jones A E.1983.The application of illite crystallinity,organic matter reflectance,and isotopic techniques to mineral exploration:A case study in Southwestern Gaspe,Quebec.Economic Geology,78(7):1350-1363
    Duke E F.1994.Near infrared spectra of muscovite,tschermak substitution,and metamorphic reaction progress:Implications for remote sensing.Geology,22(7):621-624
    Fraser S J,Whitbourn L,Yang K,Ramanaidou E,Connor P,Poropat G,Soole P,Mason P,Coward D,Phillips R.2006.Mineralogical Face-Mapping Using Hyperspectral Scanning for Mine Mapping and Control.Sixth International Mining Geology Conference,“Rising to the Challenge”,Darwin,227-232
    Frey M.1987.Very low-grade metamorphism of clastic sedimentary rocks.In:Frey M.Low Temperature Metamorphism.Glasgow:Blackie
    GMEX.2008.Spectral interpretation field manual.3rd ed.AusSpec International Ltd
    Halley S,Dilles J H,Tosdal R M.2015.Footprints:Hydrothermal alteration and geochemical dispersion around porphyry copper deposits.Society of Economic Geology Newsletter,100:12-17
    Herrmann W,Blake M,Doyle M,Huston D,Kamprad J,Merry N,Pontual S.2001.Short wavelength infrared(SWIR)spectral analysis of hydrothermal alteration zones associated with base metal sulfide deposits at rosebery and western Tharsis,Tasmania,and Highway-Reward,Queensland.Economic Geology,96:939-955
    Hunt G R,Salisbury J W,Lenhoff C J.1973.Visible and near infrared spectra of minerals and rocks.VI.Additional silicates.Modern Geology,4:85-106
    Hunt G R.1977.Spectral signatures of particulate minerals in the visible and near infrared.Geophysics,42(3):501-513
    Hunt G R,Ashley R P.1979.Spectra of altered rocks in the visible and near infrared.Economic Geology,74(7):1613-1629
    Hunt G R,Wynn J C.1979.Visible and near-infrared spectra of rocks from chromium-rich areas.Geophysics,44(4):820-825
    Inoue A.1995.Formation of clay minerals in hydrothermal environments.In:Velde B,ed.Origin and Mineralogy of Clays:Clays and the Environment.Berlin Heidelberg:Springer
    Jones S,Herrmann W,Gemmell J B.2005.Short wavelength infrared spectral characteristics of the HW Horizon:Implications for exploration in the myra falls volcanic-hosted massive sulfide camp,Vancouver Island,British Columbia,Canada.Economic Geology,100(2):273-294
    Laakso K,Peter J M,Rivard B,White H P.2016.Short-wave infrared spectral and geochemical characteristics of hydrothermal alteration at the Archean Izok Lake Zn-Cu-Pb-Ag volcanogenic massive sulfide deposit,Nunavut,Canada:Application in exploration target vectoring.Economic Geology,111(5):1223-1239
    Ryan P C,Reynolds R C Jr.1997.The chemical composition of serpentine/chlorite in the tuscaloosa formation,united states gulf coast:EDX vs.XRD determinations,implications for mineralogic reactions and the origin of anatase.Clays and Clay Minerals,45(3):339-352
    Sun Y Y,Seccombe P K,Yang K.2001.Application of short-wave infrared spectroscopy to define alteration zones associated with the Elura zinc-lead-silver deposit,NSW,Australia.Journal of Geochemical Exploration,73(1):11-26
    Tappert M,Rivard B,Giles D,Tappert R,Mauger A.2011.Automated drill core logging using visible and near-infrared reflectance spectroscopy:A case study from the olympic dam IOCG deposit,South Australia.Economic Geology,106(2):289-296
    Thompson A J B,Hauff P L,Robitaille A J.1999.Alteration mapping in exploration:Application of Short-wave Infrared(SWIR)spectroscopy.SEG Newsletter,39(3):16-27
    Velasco F,Alvaro A,Suarez S,Herrero J M,Yusta I.2005.Mapping Fe-bearing hydrated sulphate minerals with short wave infrared(SWIR)spectral analysis at San Miguel mine environment,Iberian Pyrite Belt(SW Spain).Journal of Geochemical Exploration,87(2):45-72
    Yang K,Huntington J F,Boardman J W,Mason P.1999.Mapping hydrothermal alteration in the Comstock mining district,Nevada,using simulated satellite-borne hyperspectral data.Australian Journal of Earth Sciences,46(6):915-922
    Yang K,Huntington J F,Browne P R L,Ma C.2000.An infrared spectral reflectance study of hydrothermal alteration minerals from the Te Mihi sector of the Wairakei geothermal system,New Zealand.Geothermics,29(3):377-392
    Yang K,Browne P R L,Huntington J F,Walshe J L.2001.Characterising the hydrothermal alteration of the broadlands-ohaaki geothermal system,New Zealand,using short-wave infrared spectroscopy.Journal of Volcanology and Geothermal Research,106(1-2):53-65
    Yang K,Lian C,Huntington J F,Peng Q,Wang Q.2005.Infrared spectral reflectance characterization of the hydrothermal alteration at the Tuwu Cu-Au deposit,Xinjiang,China.Mineralium Deposita,40(3):324-336
    Yang K,Huntington J F,Gemmell J B,Scott K M.2011.Variations in composition and abundance of white mica in the hydrothermal alteration system at hellyer,Tasmania,as revealed by infrared reflectance spectroscopy.Journal of Geochemical Exploration,108(2):143-156
    艾永富,刘国平.1998.内蒙大井矿床的绿泥石研究.北京大学学报(自然科学版),34(1):97-105
    白劲松,汪欢,陈志广,张斌,王恒涛.2015.短波近红外光谱蚀变填图在黑龙江某岩金矿床找矿勘查中的应用.黄金,36(12):9-14
    曹烨,李胜荣,申俊峰,要梅娟,李庆康,毛付龙.2008.便携式短波红外光谱矿物测量仪(PIMA)在河南前河金矿热液蚀变研究中的应用.地质与勘探,44(2):82-86
    郭娜.2012.甲玛斑岩-矽卡岩型铜矿床蚀变矿物组合研究.博士学位论文.成都:成都理工大学
    郭娜,郭科,张婷婷,刘廷晗,胡斌,汪重午.2012.基于短波红外勘查技术的西藏甲玛铜多金属矿热液蚀变矿物分布模型研究.地球学报,33(4):641-653
    郭娜,黄一入,郑龙,唐楠,伏媛,王成.2017.高硫-低硫化浅成低温热液矿床的短波红外矿物分布特征及找矿模型:以西藏铁格隆南(荣那矿段)、斯弄多矿床为例.地球学报,38(5):767-778
    郭娜,刘栋,唐菊兴,郑龙,黄一入,史维鑫,伏媛,唐楠,王成.2018.基于短波红外技术的蚀变矿物特征及勘查模型:以斯弄多银铅锌矿床为例.矿床地质,37(3):556-570
    连长云,章革,元春华.2005a.短波红外光谱矿物测量技术在普朗斑岩铜矿区热液蚀变矿物填图中的应用.矿床地质,24(6):621-637
    连长云,章革,元春华,杨凯.2005b.短波红外光谱矿物测量技术在热液蚀变矿物填图中的应用:以土屋斑岩铜矿床为例.中国地质,32(3):483-495
    梁树能,甘甫平,闫柏锟,王润生,杨苏明,张志军.2012.白云母矿物成分与光谱特征的关系研究.国土资源遥感,(3):111-115
    梁树能,甘甫平,闫柏琨,魏红艳,肖晨超.2014.绿泥石矿物成分与光谱特征关系研究.光谱学与光谱分析,34(7):1763-1768
    刘碧洪,刘鹤.2016.内蒙古干珠尔善德银铅锌矿床的短波红外光谱研究.地质与勘探,52(4):703-711
    刘圣伟,闫柏琨,甘甫平,杨苏明,王润生,王青华.2006.绢云母的光谱特征变异分析及成像光谱地质成因信息提取.国土资源遥感,18(2):46-50
    孟恺,申俊峰,卿敏,吴学丽,雎程晨,刘倩.2009.近红外光谱分析在毕力赫金矿预测中的应用.矿物岩石地球化学通报,28(2):147-156
    孙雨沁,许虹,李胜荣,张岩.2012.黑龙江金厂金矿床18号矿体围岩蚀变及短波红外光谱特征.矿物岩石地球化学通报,31(1):14-22
    田振东,冷成彪,张兴春,尹崇军,张伟,郭剑衡,田丰.2018.青藏高原义敦岩浆弧前寒武系变质岩绿泥石矿物学特征及其地质意义.地球科学与环境学报,40(1):36-48
    万余庆,张凤丽,闫永忠.2001.矿物岩石高光谱数据库分析.地球信息科学,3(3):54-58
    王河锦,陶晓风,Rahn M.2007.伊利石结晶度及其在低温变质研究中若干问题的讨论.地学前缘,14(1):151-156
    王润生,甘甫平,闫柏琨,杨苏明,王青华.2010.高光谱矿物填图技术与应用研究.国土资源遥感,(1):1-13
    相爱芹,2007.短波红外技术在矿物填图与遥感岩性识别中的应用研究.硕士学位论文.长沙:中南大学.
    修连存,郑志忠,俞正奎,黄俊杰,殷靓,王弥建,张秋宁,黄宾,陈春霞,修铁军,陆帅.2007.近红外光谱分析技术在蚀变矿物鉴定中的应用.地质学报,81(11):1584-1590
    修连存,郑志忠,俞正奎,黄俊杰,陈春霞,殷靓,王弥建,张秋宁,黄宾,修铁军,吴萍.2009.近红外光谱仪测定岩石中蚀变矿物方法研究.岩矿测试,28(6):519-523
    徐庆生,郭健,刘阳,黄树峰,李秋平,陈玉水.2011.近红外光谱矿物分析技术在帕南铜-钼-钨矿区蚀变矿物填图中的应用.地质与勘探,47(1):107-112
    杨志明,侯增谦,杨竹森,曲焕春,李振清,刘云飞.2012.短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用:以西藏念村矿区为例.矿床地质,31(4):699-717
    章革.2005.高光谱短波红外技术在矿区矿物填图中的应用研究.博士学位论文.北京:中国地质大学(北京)
    张篷,武振凯.2011.PIMA在斑岩型矿床蚀变带划分中的应用综述.吉林地质,30(1):129-132
    张世涛,陈华勇,张小波,张维峰,许超,韩金生,陈觅.2017.短波红外光谱技术在矽卡岩型矿床中的应用:以鄂东南铜绿山铜铁金矿床为例.矿床地质,36(6):1263-1288
    赵利青,邓军,原海涛,李晓英.2008.台上金矿床蚀变带短波红外光谱研究.地质与勘探,44(5):58-63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700