用户名: 密码: 验证码:
卫星雷达遥感在滑坡灾害探测和监测中的应用:挑战与对策
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of Satellite Radar Remote Sensing to Landslide Detection and Monitoring: Challenges and Solutions
  • 作者:李振洪 ; 宋闯 ; 余琛 ; 肖儒雅 ; 陈立福 ; 罗慧 ; 戴可人 ; 葛大庆 ; 丁一 ; 张宇星 ; 张勤
  • 英文作者:LI Zhenhong;SONG Chuang;YU Chen;XIAO Ruya;CHEN Lifu;LUO Hui;DAI Keren;GE Daqing;DING Yi;ZHANG Yuxing;ZHANG Qin;School of Engineering, Newcastle University;College of Geological Engineering and Geomatics, Chang'an University;School of Earth Science and Engineering, Hohai University;College of Electrical and Information Engineering, Changsha University of Science and Technology;College of Electronic Science, National University of Defense Technology;State Key Laboratory of Geohazard Prevention and Geoenviroment Protection, Chengdu University of Technology;College of Earth Sciences, Chengdu University of Technology;China Areo Geophysical Survey & Remote Sensing Center for Natural Resource;National Disaster Reduction Center of China, Ministry of Emergency Management of China;Ministry of Civil Affairs of the People's Republic of China;
  • 关键词:雷达遥感 ; 滑坡探测 ; 滑坡监测 ; InSAR
  • 英文关键词:radar remote sensing;;landslide detection;;landslide monitoring;;InSAR
  • 中文刊名:武汉大学学报(信息科学版)
  • 英文刊名:Geomatics and Information Science of Wuhan University
  • 机构:英国纽卡斯尔大学工学院;长安大学地质工程与测绘学院;河海大学地球科学与工程学院;长沙理工大学电气与信息工程学院;国防科技大学电子科学学院;成都理工大学地质灾害防治与地质环境保护国家重点实验室;成都理工大学地球科学学院;中国国土资源航空物探遥感中心;应急管理部国家减灾中心;中华人民共和国民政部;
  • 出版日期:2019-05-14 10:28
  • 出版单位:武汉大学学报(信息科学版)
  • 年:2019
  • 期:07
  • 基金:英国自然环境研究理事会项目(come30001,NE/K010794/1,NE/N012151/1);; 欧洲空间局龙计划-4项目(32244);; 国家自然科学基金(41804005)~~
  • 语种:中文;
  • 页:22-34
  • 页数:13
  • CN:42-1676/TN
  • ISSN:1671-8860
  • 分类号:P642.22;P627
摘要
将卫星雷达遥感应用于滑坡灾害的探测与监测,不仅可以从空间尺度上大范围捕捉到滑坡信号,而且可以从时间尺度上以较长周期追踪滑坡的运动状态。但是,卫星雷达遥感本身的局限性和滑坡所处的复杂地形环境使这一应用面临一些挑战。对卫星雷达遥感技术的4个主要挑战进行了总结与分析,同时给出了相应的解决方案:①通过提高卫星雷达影像的空间、时间分辨率,使用较长波段雷达信号或采用增强型时间序列分析技术,可降低密集植被覆盖对相干性的影响。另外,采用像素点偏移量追踪或距离向分频干涉测量方法,可克服传统干涉测量中大梯度形变引起的相位失相干。②大气延迟对卫星遥感的影响较大,尤其是地处山区的滑坡探测和监测,利用通用型卫星雷达大气改正系统可显著减弱干涉影像的大气信号并进一步简化时间序列分析,提高缓慢运动滑坡的探测和监测质量。③对于中等分辨率的雷达影像而言,利用数字高程模型可提前量化分析雷达几何畸变(如叠掩、阴影等)引发的滑坡探测监测的适用性;而对于高分辨率的雷达影像而言,利用机器学习方法无需外部高分辨率数字高程模型即可精确识别雷达影像的阴影和叠掩区并进行掩膜,从而大幅度提高数据处理效率。④针对高坡度地区残余的地形相位引起的解缠误差,可通过基线线性组合的方法予以减弱。此外,提出了一个基于多源对地观测的滑坡探测/监测系统框架,综合卫星雷达遥感与其他对地观测数据(如地基雷达、激光雷达、全球导航定位系统),搭建了一个自动化滑坡探测与监测系统。该研究旨在阐明卫星雷达遥感的优缺点,进一步深化其在滑坡灾害监测方面的应用和推广,引出未来侧重发展方向的思考与探讨。
        Satellite radar observations enable us not only to detect landslides with detailed sliding signals over broad spatial extents, but also to track landslide dynamics continuously, which has gradually been recognized by the earth observation and landslide communities. However, there are still several challenges in the landslide detection and monitoring with satellite radar observations due to their inherent limitations such as the phase decorrelation caused by heavy vegetation and/or large gradient surface movements, and the geometric distortion introduced by the side-looking orbit. In this paper, from landslide detection and monitoring perspective, the four major challenges of satellite radar technologies are discussed: ①The phase decorrelation caused by heavy vegetation can be weakened by use of synthetic aperture radar(SAR) imagery with a long radar wavelength(e.g. S-band or L-band), a short temporal resolution, and/or a high spatial resolution(e.g. 1 m or even higher), and/or advanced interferometric SAR(InSAR) time series, and the phase decorrelation associated with large deformation gradients can be addressed by SAR offset tracking and range split-spectrum interferometry techniques.②Atmospheric effects represent a big challenge of conventional InSAR for landslide detection and monitoring, especially in mountain areas. The generic atmospheric correction online service(GACOS) which is developed at Newcastle University can be used to reduce atmospheric effects on radar observations and simplify the follow-on time series analysis.③The geometric distortions such as shadows and layovers can be pre-analyzed using an external digital elevation model(DEM) for medium-spatial-resolution SAR data; in contrast, for high-resolution SAR data, a machine learning approach can be used to identify water bodies, shadow and layover areas without a requirement of a high-spatial-resolution DEM.④Residual topographic phase exhibits in areas with high buildings or steep slopes, which could easily lead to phase unwrapping errors; this can be tackled by a baseline linear combination approach. In addition, a framework is proposed to combine satellite radar technologies with other earth observations(e.g. ground-based radar, LiDAR and GNSS) to develop an automated landslide detection and monitoring system. It is expected that this paper will help the earth observation and landslide communities clarify the technical pros and cons of the satellite radar technologies so as to promote them and guide their future development.
引文
[1] Highland L,Bobrowsky P T.The Landslide Handbook:A Guide to Understanding Landslides:Posted November 2008[EB/OL].https://pubs.usgs.gov/circ/1325/pdf/C1325_508.pdf,2008
    [2] Hu X,Wang T,Pierson T C,et al.Detecting Seasonal Landslide Movement Within the Cascade Landslide Complex (Washington) Using Time-Series SAR Imagery[J].Remote Sensing of Environment,2016,187:49-61
    [3] Iverson R M.Landslide Triggering by Rain Infiltration[J].Water Resources Research,2000,36(7):1 897-1 910
    [4] Malamud B D,Turcotte D L,Guzzetti F,et al.Landslides,Earthquakes,and Erosion[J].Earth and Planetary Science Letters,2004,229(1-2):45-59
    [5] Froude M J,Petley D.Global Fatal Landslide Occurrence from 2004 to 2016[J].Natural Hazards and Earth System Sciences,2018,18:2 161-2 181
    [6] Peyret M,Djamour Y,Rizza M,et al.Monitoring of the Large Slow Kahrod Landslide in Alborz Mountain Range (Iran) by GPS and SAR Interferometry[J].Engineering Geology,2008,100(3-4):131-141
    [7] Thiebes B.Landslide Analysis and Early Warning Systems:Local and Regional Case Study in the Swabian Alb,Germany[M].Berlin,Heidelberg:Springer Science & Business Media,2012
    [8] St?hli M,S?ttele M,Huggel C,et al.Monitoring and Prediction in Early Warning Systems for Rapid Mass Movements[J].Natural Hazards and Earth System Sciences,2015,15(4):905-917
    [9] Xu Q,Yuan Y,Zeng Y,et al.Some New Pre-warning Criteria for Creep Slope Failure[J].Science China Technological Sciences,2011,54(1):210-220
    [10] International Union of Geological Sciences Working Group on Landslides.A Suggested Method for Describing the Rate of Movement of a Landslide[J].Bulletin of the International Association of Engineering Geology,1995,52(1):75-78
    [11] Metternicht G,Hurni L,Gogu R.Remote Sensing of Landslides:An Analysis of the Potential Contribution to Geo-Spatial Systems for Hazard Assessment in Mountainous Environments[J].Remote Sensing of Environment,2005,98(2-3):284-303
    [12] Cruden D M,Varnes D J.Landslides:Investigation and Mitigation.Chapter 3-Landslide Types and Processes[J].Transportation Research Board Special Report,1996,247:91-105
    [13] Society A G.Landslide Risk Management Concepts and Guidelines[J].Australian Geomechanics,2000,35(1):49-92
    [14] Tazio S,Jan K,Holger F,et al.Satellite SAR Interferometry for the Improved Assessment of the State of Activity of Landslides:A Case Study from the Cordilleras of Peru[J].Remote Sensing of Environment,2018,217:111-125
    [15] Casson B,Delacourt C,Allemand P.Contribution of Multi-temporal Remote Sensing Images to Characterize Landslide Slip Surface-Application to the La Clapière Landslide (France)[J].Natural Hazards and Earth System Sciences,2005,5(3):425-437
    [16] Mondini A,Guzzetti F,Reichenbach P,et al.Semi-automatic Recognition and Mapping of Rainfall Induced Shallow Landslides Using Optical Satellite Images[J].Remote Sensing of Environment,2011,115(7):1 743-1 757
    [17] Corominas J,Moya J,Lloret A,et al.Measurement of Landslide Displacements Using a Wire Extensometer[J].Engineering Geology,2000,55(3):149-166
    [18] Uhlemann S,Smith A,Chambers J,et al.Assessment of Ground-Based Monitoring Techniques Applied to Landslide Investigations[J].Geomorphology,2016,253:438-451
    [19] Martelloni G,Segoni S,Fanti R,et al.Rainfall Thresholds for the Forecasting of Landslide Occurrence at Regional Scale[J].Landslides,2012,9(4):485-495
    [20] La Rocca M,Galluzzo D,Saccorotti G,et al.Seismic Signals Associated with Landslides and with a Tsunami at Stromboli Volcano,Italy[J].Bulletin of the Seismological Society of America,2004,94(5):1 850-1 867
    [21] Artese S,Perrelli M.Monitoring a Landslide with High Accuracy by Total Station:A DTM-Based Model to Correct for the Atmospheric Effects[J].Geosciences,2018,8(2):46
    [22] Barla M,Antolini F.An Integrated Methodology for Landslides’ Early Warning Systems[J].Landslides,2016,13(2):215-228
    [23] Casagli N,Catani F,del Ventisette C,et al.Monitoring,Prediction,and Early Warning Using Ground-Based Radar Interferometry[J].Landslides,2010,7(3):291-301
    [24] Wang G Q.Kinematics of the Cerca Del Cielo,Puerto Rico Landslide Derived from GPS Observations[J].Landslides,2012,9(1):117-130
    [25] Liu P,Li Z,Hoey T,et al.Using Advanced InSAR Time Series Techniques to Monitor Landslide Movements in Badong of the Three Gorges Region,China[J].International Journal of Applied Earth Observation and Geoinformation,2013,21:253-264
    [26] Tomás R,Li Z,Liu P,et al.Spatiotemporal Characteristics of the Huangtupo Landslide in the Three Gorges Region (China) Constrained by Radar Interferometry[J].Geophysical Journal International,2014,197(1):213-232
    [27] Dai K,Li Z,Tomás R,et al.Monitoring Activity at the Daguangbao Mega-Landslide (China) Using Sentinel-1 Tops Time Series Interferometry[J].Remote Sensing of Environment,2016,186:501-513
    [28] Dong J,Liao M,Xu Q,et al.Detection and Displacement Characterization of Landslides Using Multi-temporal Satellite SAR Interferometry:A Case Study of Danba County in the Dadu River Basin[J].Engineering Geology,2018,240:95-109
    [29] Hilley G E,Bürgmann R,Ferretti A,et al.Dynamics of Slow-Moving Landslides from Permanent Scatterer Analysis[J].Science,2004,304(5 679):1 952-1 955
    [30] Zhao C,Kang Y,Zhang Q,et al.Landslide Identification and Monitoring Along the Jinsha River Catchment (Wudongde Reservoir Area),China,Using the InSAR Method[J].Remote Sensing,2018,10(7):993
    [31] Ferretti A,Fumagalli A,Novali F,et al.A New Algorithm for Processing Interferometric Data-Stacks:SqueeSAR[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(9):3 460-3 470
    [32] Ferretti A,Prati C,Rocca F.Permanent Scatterers in SAR Interferometry[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(1):8-20
    [33] Hooper A.A Multi-temporal InSAR Method Incorporating Both Persistent Scatterer and Small Baseline Approaches[J].Geophysical Research Letters,2008,35(16):L16302
    [34] Hooper A,Zebker H,Segall P,et al.A New Method for Measuring Deformation on Volcanoes and Other Natural Terrains Using InSAR Persistent Scatterers[J].Geophysical Research Letters,2004,31(23):L23611
    [35] Shi X,Jiang H,Zhang L,et al.Landslide Displacement Monitoring with Split-Bandwidth Interferometry:A Case Study of the Shuping Landslide in the Three Gorges Area[J].Remote Sensing,2017,9(9):937
    [36] Singleton A,Li Z,Hoey T,et al.Evaluating Sub-pixel Offset Techniques as an Alternative to D-InSAR for Monitoring Episodic Landslide Movements in Vegetated Terrain[J].Remote Sensing of Environment,2014,147:133-144
    [37] Touzi R,Lopes A,Bruniquel J,et al.Coherence Estimation for SAR Imagery[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(1):135-149
    [38] Jiang M,Ding X L,Li Z W.Hybrid Approach for Unbiased Coherence Estimation for Multitemporal InSAR[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(5):2 459-2 473
    [39] Rosen P A,Hensley S,Zebker H A,et al.Surface Deformation and Coherence Measurements of Kilauea Volcano,Hawaii,from Sir-C Radar Interferometry[J].Journal of Geophysical Research:Planets,1996,101(E10):23 109-23 125
    [40] Jiang Mi,Ding Xiaoli,Li Zhiwei.Homogeneous Pixel Selection Algorithm for Multitemporal InSAR[J].Chinese Journal of Geophysics,2018,61(12):4 767-4 776 (蒋弥,丁晓利,李志伟.时序InSAR同质样本选取算法研究[J].地球物理学报,2018,61(12):4 767-4 776)
    [41] Berardino P,Fornaro G,Lanari R,et al.A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2 375-2 383
    [42] Tang Y,Zhang Z,Wang C,et al.The Deformation Analysis of Wenjiagou Giant Landslide by the Distributed Scatterer Interferometry Technique[J].Landslides,2018,15(2):347-357
    [43] Massonnet D,Feigl K L.Radar Interferometry and Its Application to Changes in the Earth’s Surface[J].Reviews of Geophysics,1998,36(4):441-500
    [44] Wang F,Yin Y,Huo Z,et al.Slope Deformation Caused by Water-Level Variation in the Three Gorges Reservoir,China[M]//Sassa K,Rouhban B,Briceňo S,et al.Landslides:Global Risk Preparedness.Berlin,Heidelberg:Springer,2013
    [45] Liao M,Tang J,Wang T,et al.Landslide Monitoring with High-Resolution SAR Data in the Three Gorges Region[J].Science China Earth Sciences,2012,55(4):590-601
    [46] Jiang H,Feng G,Wang T,et al.Toward Full Exploitation of Coherent and Incoherent Information in Sentinel-1 Tops Data for Retrieving Surface Displacement:Application to the 2016 Kumamoto (Japan) Earthquake[J].Geophysical Research Letters,2017,44(4):1 758-1 767
    [47] Luo H,Li Z,Chen J,et al.Integration of Range Split Spectrum Interferometry and Conventional InSAR to Monitor Large Gradient Surface Displacements[J].International Journal of Applied Earth Observation and Geoinformation,2019,74:130-137
    [48] Gomba G,Parizzi A,de Zan F,et al.Toward Operational Compensation of Ionospheric Effects in SAR Interferograms:The Split-Spectrum Method[J].IEEE Transactions on Geoscience and Remote Sensing,2016,54(3):1 446-1 461
    [49] Yu C,Li Z,Penna N T,et al.Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations[J].Journal of Geophysical Research:Solid Earth,2018,123(10):9 202-9 222
    [50] Li Z,Fielding E J,Cross P.Integration of InSAR Time-Series Analysis and Water-Vapor Correction for Mapping Postseismic Motion After the 2003 Bam (Iran) Earthquake[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(9):3 220-3 230
    [51] Cascini L,Fornaro G,Peduto D.Advanced Low-and Full-Resolution DInSAR Map Generation for Slow-Moving Landslide Analysis at Different Scales[J].Engineering Geology,2010,112(1-4):29-42
    [52] Notti D,Meisina C,Zucca F,et al.Models to Predict Persistent Scatterers Data Distribution and Their Capacity to Register Movement Along the Slope[C].The Fringe 2011 Workshop,ESRIN,Frascati,Italy,2011
    [53] Singleton A G.Analysing Landslides in the Three Gorges Region (China) Using Frequently Acquired SAR Images[D].Glasgow:University of Glasgow,2014
    [54] Song Y S,Sohn H G,Park C H.Efficient Water Area Classification Using RadarSat-1 SAR Imagery in a High Relief Mountainous Environment[J].Photogrammetric Engineering & Remote Sensing,2007,73(3):285-296
    [55] Wang Jian,Xiang Maosheng,Li Shaoen.A Method for Extracting the SAR Shadow from InSAR Cohe-rence[J].Geomatics and Information Science of Wuhan University,2005,30(12):1 063-1 066 (王健,向茂生,李绍恩.一种基于 InSAR 相干系数的 SAR 阴影提取方法[J].武汉大学学报·信息科学版,2005,30(12):1 063-1 066)
    [56] Papson S,Narayanan R M.Classification via the Shadow Region in SAR Imagery[J].IEEE Transactions on Aerospace and Electronic Systems,2012,48(2):969-980
    [57] Ren Yun,Zou Huanxin,Qin Xianxiang,et al.A Method for Layover and Shadow Detecting in InSAR[J].Journal of Central South University (Sicence and Technology),2013,44(S2):396-400 (任云,邹焕新,秦先祥,等.一种 InSAR 叠掩与阴影区域的检测方法[J].中南大学学报(自然科学版),2013,44(S2):396-400)
    [58] Wei Lianhuan,Liao Mingsheng,BALZ Timo,et al.Layover Building Scatterers Extraction via High-Resolution Spaceborne SAR Tomography[J].Geomatics and Information Science of Wuhan University,2014,39(5):536-540 (魏恋欢,廖明生,BALZ Timo,等.高分辨率 SAR 层析成像建筑物叠掩散射体提取[J].武汉大学学报·信息科学版,2014,39(5):536-540)
    [59] Kropatsch W G,Strobl D.The Generation of SAR Layover and Shadow Maps from Digital Elevation Models[J].IEEE Transactions on Geoscience and Remote Sensing,1990,28(1):98-107
    [60] Hooper A.A Statistical-Cost Approach to Unwrapping the Phase of InSAR Time Series[C].International Workshop on ERS SAR Interferometry,Frascati,Italy,2010
    [61] Hooper A,Zebker H A.Phase Unwrapping in Three Dimensions with Application to InSAR Time Series[J].Journal of the Optical Society of America A,2007,24(9):2 737-2 747
    [62] Shabou A,Baselice F,Ferraioli G.Urban Digital Elevation Model Reconstruction Using Very High Resolution Multichannel InSAR Data[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(11):4 748-4 758
    [63] Ferraioli G,Shabou A,Tupin F,et al.Multichannel Phase Unwrapping with Graph Cuts[J].IEEE Geoscience and Remote Sensing Letters,2009,6(3):562-566
    [64] Ferraiuolo G,Pascazio V,Schirinzi G.Maximum a Posteriori Estimation of Height Profiles in InSAR Imaging[J].IEEE Geoscience and Remote Sensing Letters,2004,1(2):66-70
    [65] Shabou A,Tupin F.A Markovian Approach for DEM Estimation from Multiple InSAR Data with Atmospheric Contributions[J].IEEE Geoscience and Remote Sensing Letters,2012,9(4):764-768
    [66] Pepe A,Lanari R.On the Extension of the Minimum Cost Flow Algorithm for Phase Unwrapping of Multitemporal Differential SAR Interferograms[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(9):2 374-2 383
    [67] Pepe A,Yang Y,Manzo M,et al.Improved EMCF-SBAS Processing Chain Based on Advanced Techniques for the Noise-Filtering and Selection of Small Baseline Multi-look DInSAR Interferograms[J].IEEE Transactions on Geoscience and Remote Sensing,2015,53(8):4 394-4 417
    [68] Ambrosino R,Baselice F,Ferraioli G,et al.Extended Kalman Filter for Multichannel InSAR Height Reconstruction[J].IEEE Transactions on Geoscience and Remote Sensing,2017,55(10):5 854-5 863
    [69] Liu H,Xing M,Bao Z.A Cluster-Analysis-Based Noise-Robust Phase-Unwrapping Algorithm for Multibaseline Interferograms[J].IEEE Transactions on Geoscience and Remote Sensing,2015,53(1):494-504
    [70] Yu H,Li Z,Bao Z.A Cluster-Analysis-Based Efficient Multibaseline Phase-Unwrapping Algorithm[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(1):478-487
    [71] Dai Keren.Integration of New Generation SAR Data for Extracting the Earth’s Surface Topography and Displacement:Methodology and Modelling[D].Chengdu:Southwest Jiaotong University,2017 (戴可人.融合新一代卫星 SAR 数据的地形与形变信息提取模型与方法[D].成都:西南交通大学,2017)
    [72] Wasowski J,Bovenga F.Investigating Landslides and Unstable Slopes with Satellite Multi Temporal Interferometry:Current Issues and Future Perspectives[J].Engineering Geology,2014,174:103-138

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700