用户名: 密码: 验证码:
可液化倾斜场地端承单桩地震响应三维数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Three-dimensional numerical simulation of seismic responses of single end bearing piles in inclined liquefiable site
  • 作者:文艳 ; 周恩全 ; 陆建飞 ; 王炳辉
  • 英文作者:WEN Yan;ZHOU Enquan;LU Jianfei;WANG Binghui;School of Civil Engineering and Mechanics, Jiangsu University;School of Civil Engineering and Architecture, Jiangsu University of Science and Technology;
  • 关键词:液化 ; 倾斜场地 ; 非牛顿流体 ; 流固耦合 ; 端承单桩
  • 英文关键词:liquefaction;;inclined site;;non-Newtonian fluid;;fluid-structure interaction;;single end bearing pile
  • 中文刊名:江苏科技大学学报(自然科学版)
  • 英文刊名:Journal of Jiangsu University of Science and Technology(Natural Science Edition)
  • 机构:江苏大学土木工程与力学学院;江苏科技大学土木工程与建筑学院;
  • 出版日期:2019-02-15
  • 出版单位:江苏科技大学学报(自然科学版)
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金资助项目(51508236);; 江苏省自然科学基金资助项目(BK20150519);; 中国博士后基金资助项目(2015M580397);; 江苏大学高级人才科研启动基金资助项目(15JDG172)
  • 语种:中文;
  • 页:117-124
  • 页数:8
  • CN:32-1765/N
  • ISSN:1673-4807
  • 分类号:TU435
摘要
可液化倾斜场地桩基动力响应是国内外岩土抗震工程领域关注的重要问题.文中在振动台试验的基础上,将液化土层视为非牛顿流体,利用流固耦合方法进行了可液化倾斜场地桩-土-结构相互作用的三维数值计算,与试验结果进行对比,并分析了端承单桩在长径比、桩顶惯性力、端部嵌固条件影响因素下的动态响应特征.结果表明:基于流固耦合方法的数值计算与振动台试验结果一致,能真实再现振动台试验结果;桩长径比不同、桩顶是否附加质量块、桩端是否固定都能够明显影响桩基的动力反应;场地液化具有显著的滤波减震作用,地震波从底部非液化层传递至液化层,液化土中的加速度衰减更快.
        The dynamic response of pile foundation in liquefiable inclined site is an important problem in geotechnical engineering field both at home and abroad. Based on the shaking table test, the liquefiable soil layer is regarded as non-Newtonian fluid and the three-dimensional numerical calculation of the pile-soil-structure interaction in inclined liquefiable site is carried out by using fluid-structure interaction method. The results are compared with the test, and the dynamic response characteristics of the end bearing single pile under the influence of slenderness ratio, the inertia force at the top of pile and the bottom embedment condition are analyzed. The results showed that the numerical calculation based on the fluid-structure interaction method was consistent with the results of the shaking table test, which could reproduce it; the dynamic response of pile foundation could be obviously affected by different slenderness ratio, additional mass block at the top of pile and whether the pile bottom was fixed or not. Site liquefaction had a significant role in the shock absorption, the seismic wave passed from the bottom non liquefaction layer to the liquefied layer, the acceleration attenuation in the liquefied soil was faster.
引文
[ 1 ] BHATTACHARYA S, MADABHUSHI G. A critical review of methods for pile design in seismically liquefiable soils[J]. Bulletin of Earthquake Engineering, 2008,6(3):407-446. DOI: 10.1007/s10518-008-9068-3.
    [ 2 ] HASKELL J, MADABHUSHI G, CUBRINOVSKE M, et al. Lateral spreading-induced abutment rotationin the 2011 Christchurch earthquake:observati-ons and analysis[J]. Geotechnique, 2013,63(15):1310-1327.
    [ 3 ] 剑霆,姜淑珍,包峰.唐山地震桥梁震害回顾[J].世界地震工程,2006,22(1): 68-71. DOI: 10.3969/j.issn.1007-6069.2006.01.013.JIAN Ting, JIANG Shuzhen, BAO Feng. Review of seismic damage of bridges in Tangshan earthquake[J]. World Earthquake Engineering, 2006,22(1):68-71. DOI: 10.3969/j.issn.1007-6069.2006.01.013.(in Chinese)
    [ 4 ] 曹振中,侯龙清,袁晓铭,等.汶川8.0级地震液化震害及特征[J]. 岩土力学,2011,31(11):3549-3555. DOI: 10.3969/j.issn.1000-7598.2010.11.032.CAO Zhenzhong, HOU Longqing, YUAN Xiaoming, et al. Characteristics of liquefaction-indu-ced damages during Wenchuan Ms 8.0 earthquake[J]. Rock and Soil Mechanics, 2011,31(11):3549-3555. DOI: 10.3969/j.issn.1000-7598.2010.11.032.(in Chinese)
    [ 5 ] MIWA S, IKEDA T, SATO T. Damage process ofpile foundation in liquefied ground during str-ong motion[J]. Soil Dynamic and Earthquake Engineering, 2006,26(2/4):325-336. DOI: 10.1016/j.soildyn.2005.05.001.
    [ 6 ] 徐鹏举,胡庆立,凌贤长.液化场地单桩-土-桥梁结构地震相互作用大型振动台试验研究[J].土木工程学报,2010,43(s2):327-332.XU Pengju, HU Qingli, LING Xianzhang. Experimental study on seismic interaction of singlepile-soil-bridge at liquefiable site based on large scale shaking table test[J]. China Civile Engineer Journal, 2010,43(s2):327-332.(in Chinese)
    [ 7 ] 王睿,张建民.可液化地基中单桩基础的三维数值分析方法及应用[J].岩土工程学报,2015,37(11):1979-1985.DOI:10.11779/CJGE201511006.WANG Rui, ZHANG Jianmin. Three-dimensional elastic-plastic analysis method for piles in liquefiable ground[J]. Chinese Journal of Geotechnical Engineering, 2015,37(11):1979-1985. DOI: 10.11779/CJGE201511006.(in Chinese)
    [ 8 ] 李雨润,袁晓铭.液化场地上土体侧向变形对桩基影响研究评述[J]. 世界地震工程,2004,20(2):17-22. DOI: 10.3969/j.issn.1007-6069.2004.02.004.LI Yurun, YUAN Xiaoming. State-of-art of study on influences of liquefaction-induced soil spreading over pile foundation response[J].Word Earthquake Engineer, 2004,20(2):17-22. DOI: 10.3969/j.issn.1007-6069.2004.02.004.(in Chinese)
    [ 9 ] CHEN Guoxing, ZHOU Enquan, WANG Zhihua, et al. Experimental investigation on fluid char-acteristics of medium dense saturated fine sa-nd inpre and post liquefaction[J]. Bull Earth-quake Engineering, 2016(14):2185-2212.
    [10] 邹高万,贺征,顾璇.粘性流体力学[M].北京:国防工业出版社,2013:121-131.
    [11] 岳戈.ADINA流体与流固耦合功能的高级应用[M].北京:人民交通出版社,2010:57-58.
    [12] 陈国兴,席仁强,王志华.考虑流固耦合的桥墩地震反应方法[J]. 防灾减灾工程学报,2010, 30(1): 1-9. DOI: 10.3969/j.issn.1672-2132.2010.01.002.CHEN Guoxing, XI Renqiang, WANG Zhihua. Seismic response of bridge piers considering fluid-structure interaction[J]. Journal of Disaster Prevention and Mitigation Engineering, 2010,30(1):1-9. DOI: 10.3969/j.issn.1672-2132.2010.01.002.(in Chinese)
    [13] 周恩全,王志华,陈国兴.可液化场地端承单桩振动台模型试验[J]. 南京工业大学学报,2013,35(6):5-10. DOI: 10.3969/j.issn.1671-7627.2013.06.002.ZHOU Enquan, WANG Zhihua, CHEN Guoxing. Shaking table model test on single end b-earing pile in liquefiable site[J]. Journal of Nanjing University of Technology Natural Science Edition, 2013,35(6):5-10. DOI: 10.3969/j.issn.1671-7627.2013.06.002.(in Chinese)
    [14] 刘惠珊.1995年阪神大地震的液化特点[J]. 工程抗震,2001(1):22-26. DOI: 10.3969/j.issn.1002-8412.2001.01.006.LIU Huishan. Liquefaction characteristics of the Great Hanshin earthquake in 1995[J]. Earthquake Resistant Engineering, 2001(1):22-26. DOI: 10.3969/j.issn.1002-8412.2001.01.006.(in Chinese)
    [15] 王志华,徐超,周恩全,等.液化土体流滑推桩效应的振动台模型试验[J]. 地震工程与工程振动,2014,34(2):246-251. DOI: 10.13197/j.eeev.2014.02.246.wangzh.033.WANG Zhihua, XU Chao, ZHOU Enquan, et al. Shaking table test on effects of sand flow on pile in liquefied ground[J]. Earthquake Engineerring and Engineering Dynamics, 2014,34(2):246-251. DOI: 10.13197/j.eeev.2014.02.246.wangzh.033.(in Chinese)
    [16] BHATTACHARYA S, TOKIMATSU K, GODA K, et al. Collapse of Showa Bridge during 1964 Niigata earthquake:a quantitative reappraisal on the failure mechanisms[J]. Soil Dynamics and Earthquake Engineering,2014, 65:55-71. DOI: 10.1016/j.soildyn.2014.05.004.
    [17] CUBRINOVSKI M, ISHIHAR K. Liquefactioninduced ground deformation and damage to piles in the 1995 Kobe earthquake[C]//Paper present at the International Conference Skopje Earthquake 40 years of European Engineering,Skopje, Macedonia, 2003:27-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700