用户名: 密码: 验证码:
基于In SAR技术天山乌吐劲河谷同震形变遥感研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on coseismic deformation in Ukraine River Valley of Tianshan Mountains based on InSAR technology
  • 作者:汪东 ; 来风兵 ; 陈孟禹 ; 陈蜀江 ; 黄铁成 ; 贾翔
  • 英文作者:WANG Dong;LAI Fengbing;CHEN Mengyu;CHEN Shujiang;HUANG Tiecheng;JIA Xiang;College of Geographical Science and Tourism,Xinjiang Normal University;Urumqi Institute of Spatial Remote Sensing Applications;School of Foreign Languages,Suzhou University of Science and Technology;
  • 关键词:InSAR ; 同震形变 ; 天山 ; 遥感 ; 堰塞湖
  • 英文关键词:InSAR;;coseismic deformation;;Tianshan Mountains;;remote sensing;;dammed lake
  • 中文刊名:国土资源遥感
  • 英文刊名:Remote Sensing for Land & Resources
  • 机构:新疆师范大学地理科学与旅游学院;乌鲁木齐空间遥感应用研究所;苏州科技学院外国语学院;
  • 出版日期:2019-03-16 13:32
  • 出版单位:国土资源遥感
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金项目“塔克拉玛干西部别里库姆沙漠胡扬沙堆发育模式及其在荒漠监测中的作用”(编号:41661002);; 新疆干旱区湖泊环境与资源重点实验室开放基金项目“塔克拉玛干西部别里库姆沙漠胡扬沙堆发育机制研究”(编号:XJDX0909-2015-04)共同资助
  • 语种:中文;
  • 页:190-197
  • 页数:8
  • CN:11-2514/P
  • ISSN:1001-070X
  • 分类号:P315.7;P237
摘要
基于ALOS/PALSAR雷达卫星影像,采用合成孔径雷达干涉测量(interferometric synthetic aperture Radar,InSAR)技术,重建地震形变前后的数字高程模型(digital elevation model,DEM),经RTK校验后利用差值算法反演天山乌吐劲河谷地震同震场形变特征。研究结果表明:①去尖三角状崩塌形变面积为104. 47万m2,崩塌量为1 461. 60万m~3,起始端高程为3 225 m,平均坡度为48°,坡向为NNW;②喇叭状堆积形变面积为78. 61万m~2,堆积量为1 424. 27万m~3,掩埋深度为35~80 m;③河道南岸堆积形变将河床向北推进了100 m、向东推进了300 m;④崩塌形变阻塞河道后导致水体形变,形成堰塞湖水面面积在30 d内由原有的0. 039 km~2增大至0. 059 km~2,并在2010年湖面面积出现峰值0. 146 km~2;⑤形变原因不仅是由于其处在地震活动带上,还有石灰岩岩性、地形坡度和断裂构造等综合因素作用的结果。
        In this paper,the authors studied the coseismic deformation in Ukraine River valley in Tianshan Mountains,and reconstructed digital elevation modle(DEM) graph of 12.5 m spatial resolution for the study area before and after the earthquake using the ALOS/PALSAR data by InSAR remote sensing technique.Then the authors obtained the remote sensing characteristics of seismic collapse of earthquake by difference method of the DEM after the field verification by RTK calibration.The results show that:① The area of the collapse of the triangle is 104.47 million m~2,the collapse is 1 416.60 million m~3,the starting elevation is 3 225 m,the average slope is 48°,and slope direction is NNW.②The trumpet-shaped accumulation body area is 78.61 million m~2,the accumulation is 1 424.27 million m~3,and the buried depth is between 35 m and 80 m.③The river bed was pushed northward by 100 m,and the eastward advance reached 300 m,due to the accumulation body of the south of the river channel.④Collapse of the body led to the the formation of quake river.The surface area of the lake increased from 0.039 km2 to 0.059 km~2 within 30 days and the lake area reached the peak of 0.146 km~2 in 2010.⑤The factors responsible for the collapse included not only seismic activity but also limestone lithology,terrain slope,fault structure and other comprehensive factors.
引文
[1]章鑫,杜学彬,王丽,等.南北地震带大地电流分布与地震活动关系探讨[J].地学前缘,2017,24(2):202-211.Zhang X,Du X B,Wang L,et al.The spatial distribution of telluric currents and its relationship with earthquake activities in NorthSouth Seismic Belt[J].Earth Science Frontiers,2017,24(2):202-211.
    [2]张钰,陈晓清,游勇,等.汶川地震后肖家沟泥石流活动特征与灾害防治[J].水土保持通报,2014,34(5):284-289.Zhang Y,Chen X Q,You Y,et al.Activity characteristics and disaster control of Xiaojia Gully debris flow after Wenchuan earthquake[J].Bulletin of Soil and Water Conservation,2014,34(5):284-289.
    [3]石振明,郑鸿超,彭铭,等.考虑不同泄流槽方案的堰塞坝溃决机理分析---以唐家山堰塞坝为例[J].工程地质学报,2016,24(5):741-751.Shi Z M,Zheng H C,Peng M,et al.Breaching mechanism analysis of landslide dams considering different spillway schemes:A case study of Tangjiashan landslide dam[J].Journal of Engineering Geology,2016,24(5):741-751.
    [4]陈丹蕾,刘国祥,王晓文,等.基于DInSAR技术与断层自动剖分方法反演断层滑动参数[J].国土资源遥感,2016,28(3):25-30.doi:10.6046.gtzyyg.2016.03.05.Chen D L,Liu G X,Wang X W,et al.Inversion of fault slip parameters based on DInSAR and automated fault model discretization method[J].Remote Sensing for Land and Resources,2016,28(3):25-30.doi:10.6046.gtzyyg.2016.03.05.
    [5]O’Connor J E,Costa J E.The World’s Largest Floods,Past and Present:Their Causes and Magnitudes[M].U.S.Geological Survey,2004:1-13.
    [6]Montgomery D R,Hallet B,Liu Y P,et al.Evidence for Holocene mega floods down the Tsangpo River gorge,Southeastern Tibet[J].Quaternary Research,2004,62(2):201-207.
    [7]赵峰.多平台时序InSAR技术的地表形变联合监测方法研究[D].徐州:中国矿业大学,2016.Zhao F.Study on the Method of Multi-platform SAR Data Sets and MTInSAR Technique Based Ground Deformation Monitoring[D].Xuzhou:China University of Mining and Technology,2016.
    [8]雍琦.InSAR和GPS大地测量形变数据反演地震断层滑动的影响特征研究[D].成都:西南交通大学,2017.Yong Q.Research on Characteristics of Inversion for Earthquake Fault Slip Constrained by InSAR and GPS Geodetic Deformation Data[D].Chengdu:Southwest Jiaotong University,2017.
    [9]Mckillop R J,Clague J J.Statistical remote sensing-based approach for estimating the probability of catastrophic drainage from moraine-dammed lakes in southwestern British Columbia[J].Global and Planetary Change,2007,56(1-2):153-171.
    [10]王治华,徐起德.西藏帕里湖卫星遥感监测[J].山地学报,2009,27(2):240-247.Wang Z H,Xu Q D.Satellite remote sensing monitoring for Pali Lake of Tibet,China[J].Mountain Research,2009,27(2):240-247.
    [11]范建容,田兵伟,程根伟,等.基于多源遥感数据的5·12汶川地震诱发堰塞体信息提取[J].山地学报,2008,26(3):257-262.Fan J R,Tian B W,Cheng G W,et al.Investigation on damming object induced by the earthquake of Wenchuan on May 12 based on multi-platform remote sensing[J].Mountain Research,2008,26(3):257-262.
    [12]殷幼松.高相干分布式目标应用于时间序列InSAR技术监测地表形变研究[D].北京:中国测绘科学研究院,2016.Yin Y S.Highly-coherence Distributed Scatterer Time-series InSAR and Its Application to Monitoring Ground Deformation[D].Beijing:Chinese Academy of Surveying and Mapping,2016.
    [13]高明亮,宫辉力,陈蓓蓓,等.基于InSAR技术的地表三维形变获取方法综述[J].测绘通报,2017(1):1-4.Gao M L,Gong H L,Chen B B,et al.Review of three-dimensional surface deformation acquisition from InSAR measurements and its application[J].Bulletin of Surveying and Mapping,2017(1):1-4.
    [14]刘振国.DInSAR技术在矿区地表重复采动开采沉陷监测中的应用研究[D].徐州:中国矿业大学,2014.Liu Z G.Study on the Subsidence Monitoring Caused by Repeated Excavation with DIn SAR Technology[D].Xuzhou:China University of Mining and Technology,2014.
    [15]占文俊,李志伟,韦建超,等.一种InSAR大气相位建模与估计方法[J].地球物理学报,2015,58(7):2320-2329.Zhan W J,Li Z W,Wei J C,et al.A strategy for modeling and estimating atmospheric phase of SAR[J].Chinese Journal of Geophysics,2015,58(7):2320-2329.
    [16]罗菲.查干莫顿水电站调水流量分析[J].小水电,2017(1):34-36.Luo F.Analysis on water diversion flow of Chagan Morton hydropower station[J].Small Hydro Power,2017(1):34-36.
    [17]张悼元,王士天.滑坡文集(8)[C]//滑坡文集编委会.滑坡文集.北京:中国铁道出版社,1982:92-95.Zhang D Y,Wang S T.Landslide articles editorial board(8)[C]//Landslide articles editorial board.Landslide artides.Beijing:China Railway Publishing House,1982:92-95.
    [18]周廷儒.新疆地貌[M].北京:科学出版社,1978.Zhou T R.Xinjiang Geomorphology[M].Beijing:Science Press,1978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700