用户名: 密码: 验证码:
基于机器学习的钻孔数据隐式三维地质建模方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Implicit 3D Geological Modeling Method for Borehole Data Based on Machine Learning
  • 作者:郭甲腾 ; 刘寅贺 ; 韩英夫 ; 王徐磊
  • 英文作者:GUO Jia-teng;LIU Yin-he;HAN Ying-fu;WANG Xu-lei;School of Resources & Civil Engineering,Northeastern University;
  • 关键词:机器学习 ; 支持向量机 ; 三维地质建模 ; 隐式建模 ; 钻孔数据
  • 英文关键词:machine learning;;support vector machine;;3D geological modeling;;implicit modeling;;borehole data
  • 中文刊名:东北大学学报(自然科学版)
  • 英文刊名:Journal of Northeastern University(Natural Science)
  • 机构:东北大学资源与土木工程学院;
  • 出版日期:2019-09-15
  • 出版单位:东北大学学报(自然科学版)
  • 年:2019
  • 期:09
  • 基金:国家自然科学基金资助项目(41671404);; 国家级大学生创新创业训练计划资助项目(201810145060);; 中央高校基本科研业务费专项资金资助项目(N170104019);; 中国地质调查局智能地质调查支撑平台建设项目(DD20160355)
  • 语种:中文;
  • 页:123-128
  • 页数:6
  • CN:21-1344/T
  • ISSN:1005-3026
  • 分类号:TU195;P634
摘要
针对基于钻孔数据的传统显式三维地质建模方法存在过程繁琐、模型质量难以保证等缺点,本文提出了一种基于机器学习的隐式三维地质建模方法,将地层三维建模问题转换为地下空间栅格单元的属性分类问题.分别基于支持向量机、BP神经网络等分类算法,实现了钻孔数据的自动三维地质建模.实际建模结果表明,对于有限、稀疏的钻孔数据,支持向量机方法建模准确率较高,建模效率、效果优于显式建模方法.最后通过敏感性分析研究了超参数对建模结果准确率、模型形态的影响,为可控的自动三维地质建模提供了一种新的解决思路.
        Considering the complex modeling process and difficulty in guaranteeing the model quality of traditional explicit 3 D modeling methods,an implicit 3 D geological modeling method for borehole data based on machine learning was proposed,which transformed the strata 3 D modeling problem into a process of geological attribute classification of the underground spatial grid units. Based on the classification algorithms of support vector machine and BP neural network,automatic 3 D geological modeling from borehole data was realized. The results demonstrate that for sparse and limited borehole data,support vector machine can generally perform better than explicit methods. Finally,the influence of hyper-parameter on modeling accuracy and model shape is studied through sensitivity analysis,which provides a new solution for controllable 3 D geological modeling.
引文
[1]朱良峰,吴信才,刘修国,等.基于钻孔数据的三维地层模型的构建[J].地理与地理信息科学,2004,20(3):26-30.(Zhu Liang-feng,Wu Xin-cai,Liu Xiu-guo, et al.Reconstruction of 3D strata model based on borehole data[J]. Geography and Geo-information Science,2004,20(3):26-30.)
    [2] Wu L X. Topological relations embodied in a generalized triprism(GTP)model for a 3D geoscience modeling system[J]. Computers&Geosciences,2004,30(4):405-418.
    [3]车德福,吴立新,殷作如,等.基于GTP的断层三维交互建模方法[J].东北大学学报(自然科学版),2008,29(3):395-398.(Che De-fu,Wu Li-xin,Yin Zuo-ru,et al. On the GTP-based3D interactive modeling method for geological faults[J].Journal of Northeastern University(Natural Science),2008,29(3):395-398.)
    [4]郭甲腾,吴立新,杨宜舟,等.岩土工程勘察场地立体空间建模与可视化信息管理[J].东北大学学报(自然科学版),2014,35(1):122-125.(Guo Jia-teng,Wu Li-xin,Yang Yi-zhou,et al. Threedimensional modeling and visualization information management of geotechnical engineering investigation sites[J]. Journal of Northeastern University(Natural Science),2014,35(1):122-125.)
    [5] Calcagno P,Chilès J P,Courrioux G,et al. Geological modelling from field data and geological know ledge:part I.modelling method coupling 3D potential-field interpolation and geological rules[J]. Physics of the Earth&Planetary Interiors,2011,171(1):147-157.
    [6] Caumon G,Gray G,Antoine C,et al. Three-dimensional implicit stratigraphic model building from remote sensing data on tetrahedral meshes:theory and application to a regional model of La Popa Basin,NE M exico[J]. IEEE Transactions on G eoscience&Remote Sensing,2013,51(3):1613-1621.
    [7] Hillier M J,Schetselaar E M,Kemp E A D,et al. Threedimensional modelling of geological surfaces using generalized interpolation with radial basis functions[J].Mathematical G eosciences,2014,46(8):931-953.
    [8]邢延涛,李利军.三维地质体重构中空间数据插值方法的研究[J].计算机与数字工程,2006,34(12):45-47.(Xing Yan-tao,Li Li-jun. Research of spatial interpolation methods about the 3D-reconstruction of geological models[J]. Computer&Digital Engineering,2006,34(12):45-47.)
    [9] Smirnoff A,Boisvert E,Paradis S J. Support vector machine for 3D modelling from sparse geological information of various origins[J]. Computers&G eosciences,2008,34(2):127-143.
    [10] He K,Zhang X,Ren S,et al. Delving deep into rectifiers:surpassing human-level performance on imagenet classification[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago, 2015:1026-1034.
    [11]ítalo G G,Kumaira S,Guadagnin F. A machine learning approach to the potential-field method for implicit modeling of geological structures[J]. Computers&G eosciences,2017,103:173-182.
    [12] Abedi M,Norouzi G H,Bahroudi A. Support vector machine for multi-classification of mineral prospectivity areas[J].Computers&G eosciences,2012,46:272-283.
    [13] Edwards J,Lallier F, Caumon G, et al. Uncertainty management in stratigraphic well correlation and stratigraphic architectures:a training-based method[J]. Computers&G eosciences,2017,111(2):1-17.
    [14] Cracknell M J,Reading A M. Geological mapping using remote sensing data:a comparison of five machine learning algorithms,their response to variations in the spatial distribution of training data and the use of explicit spatial information[J]. Computers&G eosciences,2014,63(1):22-33.
    [15]谷琼.面向非均衡数据集的机器学习及在地学数据处理中的应用[D].武汉:中国地质大学,2009.(Gu Qiong. Research of machine learning on imbalanced data sets and its application in geoscienes data processing[D].Wuhan:China University of Geosciences,2009.)
    [16] Pedregosa F,Gramfort A,Michel V,et al. Scikit-learn:machine learning in Python[J]. Journal of Machine Learning Research,2011,12(10):2825-2830.
    [17] Chaudhuri A,De K,Chatterjee D. A comparative study of kernels for the multi-class support vector machine[C]//International Conference on Natural Computation. Jinan,2008:3-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700