用户名: 密码: 验证码:
基于精细DEM的崩塌滑坡灾害识别及主控因素分析——以雅鲁藏布江缝合带加查—朗县段为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:IDENTIFICATION AND MAIN CONTROLLING FACTOR ANALYSIS OF COLLAPSE AND LANDSLIDE BASED ON FINE DEM——TAKING JIACHA-LANGXIAN SECTION OF YARLUNG ZANGBO SUTURE ZONE AS AN EXAMPLE
  • 作者:王瑞琪 ; 王学良 ; 刘海洋 ; 孙娟娟 ; 王新辉 ; 张苏
  • 英文作者:WANG Ruiqi;WANG Xueliang;LIU Haiyang;SUN Juanjuan;WANG Xinhui;ZHANG Su;Key Laboratory of Shale Gas and Geoengineering,Institute of Geology and Geophysics,Chinese Academy of Sciences;Chinese Academy of Sciences University;Innovation Academy for Earth Science,Chinese Academy of Sciences;Beijing North-Star Digital Remote Sensing Technology Co.,Ltd.;State Grid Economic and Technological Research Institute Co.,Ltd.;
  • 关键词:地质灾害 ; 识别 ; 主控因素 ; 相关性分析
  • 英文关键词:Geological hazards;;Identification;;Main control factors;;Correlation analysis
  • 中文刊名:工程地质学报
  • 英文刊名:Journal of Engineering Geology
  • 机构:中国科学院地质与地球物理研究所中国科学院页岩气与地质工程重点实验室;中国科学院大学;中国科学院地球科学研究院;北京洛斯达数字遥感技术有限公司;国网经济技术研究院有限公司;
  • 出版日期:2019-10-15
  • 出版单位:工程地质学报
  • 年:2019
  • 期:05
  • 基金:基于合成孔径雷达的地质灾害分析技术在川藏高原战略输电通道中的应用研究(52199918000C);; 中国科学院战略性先导科技专项(A类)(XDA23090402);; 藏东南重大地质与工程灾害(2019QZKK0905)资助~~
  • 语种:中文;
  • 页:218-224
  • 页数:7
  • CN:11-3249/P
  • ISSN:1004-9665
  • 分类号:P642.2
摘要
雅鲁藏布江缝合带加查—朗县段位于青藏高原东南部地区,地形起伏度大,地质灾害分布密集。本文主要基于机载雷达获取的10 m精度影像数据,卫星遥感数据,以及高精度无人机航拍数据,对崩塌、滑坡地质灾害进行识别,并研究其主控因素。共计识别41处崩塌与92处滑坡,利用统计方法,分析崩塌、滑坡与各主控因素的相关性。对于识别的崩塌滑坡进行厚度识别,从而建立了灾害面积与体积之间的函数关系,实现了在已知崩塌滑坡灾害面积的情况下,对灾害规模的估算。本文阐明了区内地质灾害的空间分布情况,并研究了区域内崩塌滑坡地质灾害的主控因素。结果表明:滑坡主要发育在雅鲁藏布江南岸以及北岸坡体的中下部,而崩塌主要发生在北岸坡体的中上部。地层岩性、地形地貌、地质构造和岩体结构是崩塌、滑坡的主控因素,崩塌主要集中在砾岩和花岗岩地区,而千枚岩地区多发育有滑坡灾害。研究区内的崩塌由坡度、坡向和高程共同控制,其中坡度为主控因素;滑坡主要受到断层的控制,坡度对滑坡的发育具有一定的影响作用,高程和坡向对滑坡的影响较小。滑坡主要以牵引型为主,且大多数滑坡滑动的方向大致垂直于断裂的走向;崩塌主要以滑移式为主,通过对岩体结构面的提取可以分析其结构面发育情况,从而分析结构面对崩塌的控制作用。
        Jiacha-Langxian section of the Yarlung Zangbo suture zone is located in the southeastern part of the Qinghai-Tibet Plateau. The terrain is highly undulated and the geological disasters are densely distributed. This paper is mainly based on 10 m precision image data acquired by airborne radar,satellite remote sensing data,and high precision drone aerial data to identify the geological hazards of collapse and landslide,and to study its main control factors. We identified 41 collapses and 92 landslides,and used statistical methods to analyze the correlation between main controlling factors and hazards. The thickness identification of the identified collapse and landslides establishes a functional relationship between the area and the volume of the hazards. The estimation of the scale of the collapse and landslide on the base of known area is realized. This paper clarifies the spatial distribution of geological hazards in the area,and studies the main controlling factors of geological hazards of collapse and landslides in the area. The results show that the landslide is mainly developed on the south bank of the Yarlung Zangbo River and the middle and lower part of the slope of the north bank,while the collapse mainly occurs in the middle and upper part of the slope of the north bank. From the analysis of stratum lithology,geological structure,rock mass structure, climatic conditions and human engineering, the collapse is mainly concentrated in conglomerate and granite areas,while landslides are often developed in phyllite. The collapse in the study area is controlled by the slope,the slope direction and the elevation. The slope is the main controlling factor. Landslides are mainly controlled by faults. Slopes have a certain influence on the development of landslides. Elevation and slope direction have little effect on landslides. The landslide is mainly traction type,and the directions of most landslides are generally perpendicular to the direction of the fracture. The collapse is mainly based on the slip type.By analyzing the structural plane of the rock mass,the development of the structural plane can be analyzed,and the genetic mechanism is analyzed.
引文
Akgun A,Kncal C,Pradhan B.2012.Application of remote sensing data and GIS for landslide risk assessment as an environmental threat to Izmir city(west Turkey)[J].Environmental Monitoring&Assessment,184(9):5453-5470.
    Chen H K,Tang H M.2011.Evaluation of geological disaster fatalness along Sichuan-Tibet highway[J].Highway,(9):17-23.
    Huang H F,Lin H Y,LüY M,et al.2017.Micro unmanned aerial vehicle based remote sensing method and application for emergency survey of individual geohazard[J].Journal of Engineering Geology,25(2):447-454.
    Larsen I J,Montgomery D R,Korup O.2010.Landslide erosion controlled by hillslope material[J].Nature Geoscience,773(4):247-251.
    Li Z Y,Yang Y Y.1994.An introduction to engineering geology[M].Beijing:China University of Geosciences Press.
    Li X Z,Zhong W,Zhang X G,et al.2017.Hazard ways of landslides and avalanches on road engineering in Sichuan-Tibet traffic corridor[J].Journal of Engineering Geology,25(5):1245-1251.
    Liu H Y,Wang X L,Li L H,et al.2017.Application of UAV aerial photogrammetry for rockfall disaster survey[J].Journal of Engineering Geology,25(S):82-87.
    Mantovani F,Soeters R,Van Westen C J.1996.Remote sensing techniques for landslide studies and hazard zonation in Europe[J].Geomorphology,15(3-4):213-225.
    Mckean I,Buechel S,Gaydos L.1991.Remote sensing and landslide hazard assessment[J].Photogrammetric Engineering&Remote Sensing,57(9):1185-1193.
    Scaioni M,Longoni L,Melillo V,et al.2014.Remote sensing for landslide investigations:An overview of recent achievements and perspectives[J].Remote Sensing,6(10):9600-9652.
    Tang Y,Wang L J,Ma G C,et al.2019.Emergency monitoring of highlevel landslide disasters in Jinsha River using domestic remote sensing satellites[J].Journal of Remote Sensing,23(2):252-261.
    Wang X L,Zhang L Q,Wang S J,et al.2012.Field investigation and rockfall hazard zonation at the Shijing Mountains Sutra caves cultural heritage(China)[J].Environmental Earth Sciences,66(7):1897-1908.
    Wang X L,Zhang L Q,Wang S J,et al.2014.Regional landslide susceptibility zoning with considering the aggregation of landslide points and the weights of factors[J].Landslides,11(3):399-409.
    Wang X L,Liu H Y,Wang R Q,et al.2018.The approach of rock collapse(rockfall)identification and prediction for power transmission and transformation project in mountain area[J].Journal of Engineering Geology,26(1):172-178.
    Wu R A,Guo C B,Du Y B,et al.2017.Research on geohazard developing characteristics in Jiacha to Langxian section of SichuanTibet Railway[J].Geoscience,31(5):956-964.
    Xu Q,Zheng G,Li W L,et al.2018.Study on successive landslide damming events of Jinsha River in Baige Village on October 11 and November 3,2018[J].Journal of Engineering Geology,26(6):1534-1551.
    Yuan G X,Wu Q,Shang Y J,et al.2010.Regional engineering geology of Ranwu-Lulang section of Sichuan-Tibet highway[J].Journal of Geological Hazards and Environment Preservation,21(3):34-41.
    Zhang L Q,Xu B,Shang Y J,et al.2004.Engineering geological investigation and assessment on rockfall hazard along Basu-Linzhi section of south line of Sichuan-Tibet highway[J].Chinese Journal of Rock Mechanics and Engineering,23(9):1551-1557.
    陈洪凯,唐红梅.2011.川藏公路地质灾害危险性评价[J].公路,(9):17-23.
    黄海峰,林海玉,吕奕铭,等.2017.基于小型无人机遥感的单体地质灾害应急调查方法与实践[J].工程地质学报,25(2):447-454.
    李智毅,杨裕云.1994.工程地质学概论[M].北京:中国地质大学出版社.
    李秀珍,钟卫,张小刚,等.2017.川藏交通廊道滑坡崩塌灾害对道路工程的危害方式分析[J].工程地质学报,25(5):1245-1251.
    刘海洋,王学良,李丽慧,等.2017.无人机航空摄影测量技术在崩塌灾害调查中的应用[J].工程地质学报,25(增刊):82-87.
    唐尧,王立娟,马国超,等.2019.利用国产遥感卫星进行金沙江高位滑坡灾害灾情应急监测[J].遥感学报,23(2):252-261.
    王学良,刘海洋,王瑞琪,等.2018.山区输变电工程崩塌(滚石)灾害识别与预测方法[J].工程地质学报,26(1):172-178.
    吴瑞安,郭长宝,杜宇本,等.2017.川藏铁路加查---朗县段地质灾害发育特征研究[J].现代地质,31(5):956-964.
    许强,郑光,李为乐,等.2018.2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J].工程地质学报,26(6):1534-1551.
    袁广祥,吴琦,尚彦军,等.2010.雅鲁藏布江大拐弯北段区域工程地质及其对地质灾害发育的影响[J].地质灾害与环境保护,21(3):34-41.
    张路青,许兵,尚彦军,等.2004.川藏公路南线八宿---林芝段滚石灾害的工程地质调查与评价[J].岩石力学与工程学报,23(9):1551-1557.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700