用户名: 密码: 验证码:
基于ABAQUS的动车组空气弹簧垂向静刚度特性有限元分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Finite Element Analysis on Vertical Statics Rigidity Characteristics of EMU Air Spring Based on ABAQUS
  • 作者:陈戈 ; 鲁寨军 ; 孔风 ; 方聪聪
  • 英文作者:CHEN Ge;LU Zhaijun;KONG Feng;FANG Cong;Key Laboratory of Traffic Safety on Track,Ministry of Education;Zhongche Changchun Railway Bus Co.,Ltd.;
  • 关键词:空气弹簧 ; 刚度特性 ; 有限元 ; ABAQUS
  • 英文关键词:air spring;;rigidity characteristics;;finite element;;ABAQUS
  • 中文刊名:湖南工业职业技术学院学报
  • 英文刊名:Journal of Hunan Industry Polytechnic
  • 机构:轨道交通安全教育部重点实验室;中车长春轨道客车股份有限公司;
  • 出版日期:2019-04-15
  • 出版单位:湖南工业职业技术学院学报
  • 年:2019
  • 期:02
  • 基金:国家重点研发计划资助(项目编号:2017YFB1201200)
  • 语种:中文;
  • 页:7-11+26
  • 页数:6
  • CN:43-1374/Z
  • ISSN:1671-5004
  • 分类号:U266
摘要
动车组空气弹簧的力学特性往往具有较强的非线性与耦合性,涉及到几何非线性、材料非线性和接触非线性等问题,给计算分析带来了较大的困难。为了准确获得动车组空气弹簧在工作过程中的垂向静力学特性,本文使用有限元软件ABAQUS建立了动车组空气弹簧非线性力学仿真模型。基于该模型对空气弹簧垂向静态刚度试验进行模拟,分析了初始内压、振幅、帘线角度和帘线间距对空气弹簧垂向静刚度的影响。
        The mechanical characteristics of air spring of EMU often have strong nonlinearity and coupling, which involves geometric non-linearity, material non-linearity and contact non-linearity, and brings great difficulties to calculation and analysis. In order to accurately obtain the vertical static characteristics of the air spring of EMU in the working process,the mechanical simulation model of the air spring of EMU is established by using the non-linear finite element software ABAQUS. Based on this model, the vertical static rigidity test of air spring is simulated, and the effects of initial internal pressure, amplitude, cord angle and cord spacing on the vertical static rigidity of air spring are analyzed.
引文
[1]张利国,张嘉钟,贾力萍,黄文虎,张学伟.空气弹簧的现状及其发展[J].振动与冲击,2007,26(2):146-151.
    [2]石谨瑞,覃勇,何健.简述高速动车组空气弹簧特性及发展趋势[J].内燃机与配件,2017(20):50-51.
    [3]杨松.空气弹簧悬架的发展历史和应用[J].商用汽车,2003(3):62-63.
    [4]Niculescu A I, Jankowski A, Kowalski M, Sireteanu, T.On the New Concept and Advantages of the Integrated Shock Absorber—Air Spring—“Isas”[M]. Proceedings of the European Automotive Congress EAEC-ESFA 2015. 2016.
    [5]常同珍.附加气室对空气弹簧动力学特性影响的研究[J].汽车与驾驶维修(维修版),2017(12):146-147.
    [6]Zhu H, Yang J, Zhang Y, Feng X.. A novel air spring dynamic model with pneumatic thermodynamics, effective friction and viscoelastic damping☆[J]. Journal of Sound&Vibration, 2017, 408:87-104.
    [7]Razdan S, Awasare P J, Bhave S Y. Active Vibration Control using Air Spring[J]. Journal of the Institution of Engineers, 2018(5):1-12.
    [8]Wong P K, Xie Z, Zhao J, et al. Analysis of automotive rolling lobe air spring under alternative factors with finite element model[J]. Journal of Mechanical Science&Technology, 2014, 28(12):5069-5081.
    [9]Wong P, Xie Z, Zhao J, et al. Analysis of automotive rolling lobe air spring under alternative factors with finite element model[J]. Journal of Mechanical Science&Technology, 2014, 28(12):5069-5081.
    [10]陈昊森,唐华平,王胜泽,等.自由膜式空气弹簧非线性有限元分析[J].现代机械,2018(4):46-50.
    [11]刘国漪,张少波,周劲松.汽车空气弹簧动静刚度特性分析[J].海南大学学报(自然科学版),2018,36(2).
    [12]陈宏芳.高等工程热力学[M].北京:清华大学出版社,2003.
    [13]徐涛.CRH2动车组空气弹簧力学性能有限元分析[D].兰州交通大学,2014.
    [14]Jha N K, Nackenhorst U, Pawar V S, et al. On the constitutive modelling of fatigue damage in rubber-like materials[J]. International Journal of Solids and Structures,2018.
    [15]陈家照,黄闽翔,王学仁,王珽.几种典型的橡胶材料本构模型及其适用性[J].材料导报,2015(S1):118-120.
    [16]张广世,袁志富,赵洪伦.基于REBAR模型的空气弹簧有限元分析[J].铁道车辆,2002,40(8):4-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700