用户名: 密码: 验证码:
滑坡滑带摩擦热离散元数值模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:DISCRETE ELEMENT NUMERICAL SIMULATION RESEARCH ON FRICTION HEAT IN SLIDING ZONE OF THE LANDSLIDE
  • 作者:朱晨光 ; 刘春 ; 许强 ; 胡伟 ; 张晓宇
  • 英文作者:ZHU Chenguang;LIU Chun;XU Qiang;HU Wei;ZHANG Xiaoyu;School of Earth Sciences and Engineering,Nanjing University;Nanjing University High-tech Institute at Suzhou;State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology;
  • 关键词:MatDEM ; 离散元 ; 能量 ; 热量 ; 滑坡
  • 英文关键词:MatDEM;;Discrete element method;;Energy;;Heat;;Landslide
  • 中文刊名:工程地质学报
  • 英文刊名:Journal of Engineering Geology
  • 机构:南京大学地球科学与工程学院;南京大学(苏州)高新技术研究院;地质灾害防治与地质环境保护国家重点实验室(成都理工大学);
  • 出版日期:2019-06-15
  • 出版单位:工程地质学报
  • 年:2019
  • 期:03
  • 基金:国家自然科学基金项目(41761134089);; 江苏省自然科学基金青年项目(BK20170393);; 青岛海洋科学与技术国家实验室开放基金项目(QNLM2016ORP0110)资助~~
  • 语种:中文;
  • 页:178-185
  • 页数:8
  • CN:11-3249/P
  • ISSN:1004-9665
  • 分类号:P642.22
摘要
高速远程滑坡具有较强的灾害性,已逐渐成为国内外地质灾害领域研究的热点。大型滑坡滑动过程中滑带剧烈摩擦和生热,使得局部温度升高,改变岩土体的抗剪强度等性质、以及产生气垫效应等,可能促进高速远程滑坡运动。为了定量地研究滑坡滑带中热量的生成和温度场分布规律,本研究改进自主开发的MatDEM离散元软件,建立了约23万单元的二维边坡模型,对滑坡的启动、高速滑动和堆积全过程进行了数值模拟。结果表明:MatDEM较为准确地模拟了滑坡典型特征,同时展示了边坡模型的热量生成特征;模拟结果表明滑带附近形成明显的"核形"高热量带,100 m高的边坡滑带单元热量增加值最高达3×10~5J,理想条件下造成比热容为550 J/kg·℃的1 kg土体升高545.5℃左右;高热量带依附于滑带并随着滑体最厚处向前扩展;MatDEM单元连接状态图和热量场图直观地展现了滑体和滑床中的裂隙发育过程。本研究为滑坡数值模拟研究提供了一个新手段。
        High-speed remote landslide has become a hotspot in geological disasters due to the strong disaster.During the process of large-scale landslide,the heat generated by friction of the sliding zone increases the temperature of the local area,which changes the mechanical properties of the rock and soil.In order to explore the heat generated and accumulated in the sliding zone quantitatively,this paper developes a slope model of 230,000particles by using the Mat DEM discrete element software.It simulates the sliding process of landslide.The results show that Mat DEM simulates the typical characteristics of landslide accurately and shows the law of heat in discrete element model.The simulation results show that the"kerosene"high heat zone is formed near the sliding zone.With the highest heat at 3×10~5J in sliding zone cause the temperature increase 545.5℃with heat capacity of550J/kg·℃when the slope heights 100 m.The high speed is caused by high temperature in the slidezone.Highcalorie belt attaching to the sliding zone occur displacement accompanying the thickest sliding body.Morever,it is proved that the Mat DEM can use unit connection state and the thermal field demonstrate the development law of cracks directly in the sliding body and sliding bed,which provides a new numerical calculation in landslides.
引文
Breien H,De Blasio F V,Elverhi A,et al.2008.Erosion and morphology of a debris flow caused by a glacial lake outburst flood,Western Norway.[J].Landslides,5(3):271-280.
    Cheng Q G,Zhang Z Y,Huang R Q.2007.Study on dynamics ofrock avalanches:state of the artreport[J].Journal of Mountain Science,25(1):72-84.
    De Blasio F V.2008.Production of frictional heat and hot vapour in a model of self-lubricating landslides[J].Rock Mechanics and Rock Engineering,41:219-226.
    Farhat C,Lesoinne M,Tallec P L.1998.Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces:Momentum and energy conservation,optimal discretization and application to aeroelasticity[J].Computer Methods in Applied Mechanics&Engineering,157:95-114.
    Ge Y F,Tang H M,Li W,et al.2016a.Evaluation for deposit areas of rock avalance based on features of rock mass structure[J].Earth Science,25(9):1583-1592.
    Ge Y F,Tang H M,Wang L Q,et al.2016b.Strain energy evolution of penetrative rock joints under shear loading[J].Chinese Journal of Rock Mechanics and Engineering,35(6):1111-1121.
    Gu Y F,Lu Y,Liu B,et al.2016.Numerical simulation of hydraulic fracturing based on discrete element method[J].Geological Journal of China Universities,22(1):194-199.
    Habib P.1975.Production of gaseous pore pressure during rock slides[J].Rock Mechanics and Rock Engineering,7(4):193-197.
    Hu M J,Pan H L,Zhu C Q,et al.2015.High-speed ring shear tests to study the motion and acceleration processes of the Yingong landslide[J].Journal of Mountain Science,12(6):1534-1541.
    Hu W,Huang R Q,Mc Saveney M.2018 Mineral changes quantify frictional heating during a large low-friction landslide[J].Geology,46(3):223-226.
    Jiang M J,Konrad J M,Leroueil S.2003.An efficient technique for generating homogeneous specimens for DEM,studies[J].Computers&Geotechnics,30(7):579-597.
    Liu C.2012.Image analysis and numerical simulation of soil temperature field,strength and deformation in urban hear island environment[D].Nanjing:Nanjing University.
    Liu C,Shi B,Pollard D D,et al.2015.Mechanism of formation of iggly compaction bands in porous sandstone:2.Numerical simulation using discrete element method[J].Journal of Geophysical Research Solid Earth,120(12):8153-8168.
    Liu C,Xu Q,Shi B,et al.2017.Mechanical properties and energy conversion of 3D close-packed lattice model for brittle rocks[J].Computers&Geosciences,103:12-20.
    Liu C,Shi B,Gu K,et al.2014.Development and application of LargeScale discrete element simulation system for rock and soil[J].Journal of Engineering Geology,22(S1):551-557.
    Liu C,Zhang X Y,Xu Q,et al.2017.Research on energy conservation simulation of three dimensional discrete element model[J].Chinese Journal of Underground Space and Engineering,13(S2):698-704.
    Wang S J,Wang X N.1990.Research on the velocity of landslide by thermoluminescence[J].Chinese Science Bulletin,35(18):1409-1412.
    Wang Y F,Dong J J,Cheng Q G.2017.Velocity-dependent frictional weakening of large rock avalanche basal facies:Implications for rock avalanche hypermobility[J].Journal of Geophysical Research Solid Earth,122(3):1648-1676.
    Xia H,Hu X L,Tang H M,et al.2017.Application of infrared thermal randiation imaging technology to landslide physical model test[J].Rock and Soil Mechanics,38(1):291-299.
    Xing A G,Yin Y P,Qi C,et al.2012.Study on the wind tunnel testing of air cushion effect of high-speed and long-runout landslide[J].Journal of Shanghai Jiaotong University,46(10):1642-1646.
    Xu Q,Dong X J.2011.Genetic type of large-scale landslides induced by wenchuan earthquake[J].Earth Science-Journal of China University of Geosciences 36(6):1134-1141.
    Xu Q,Li W L.2010.Distribution of Large-Scale landslides induced by the Wenchuan earthquake[J].Journal of Engineering Geology,18(6):818-826.
    Zhang M,Yin Y P,Wu S R,et al.2010.Development statusand prospects of studies on kinematics long runout rock avalanches[J].Journal of Engineering Geology,18(6):805-817.
    Zhang W F,Huang R Q,Pei X J.2015.Analysis on kinematics characteristics and movement process of Daguangbao landslide[J].Journal of Engineering Geology,23(5):866-885.
    程谦恭,张倬元,黄润秋.2007.高速远程崩滑动力学的研究现状及发展趋势[J].山地学报,25(1):72-84.
    葛云峰,唐辉明,李伟,等.2016a.基于岩体结构特征的高速远程滑坡致灾范围评价[J].地球科学,41(9):1583-1592.
    葛云峰,唐辉明,王亮清,等.2016b.剪切荷载下贯通结构面应变能演化机制研究[J].岩石力学与工程学报,35(6):1111-1121.
    顾颖凡,卢毅,刘兵,等.2016.基于离散元法的水力压裂数值模拟[J].高校地质学报,22(1):194-199.
    刘春,施斌,顾凯,等.2014.岩土体大型三维离散元模拟系统的研发与应用[J].工程地质学报,22(增刊):551-557.
    刘春,张晓宇,许强,等.2017.三维离散元模型的滑坡能量守恒模拟研究[J].地下空间与工程学报,13(S2):698-704.
    刘春.2012.城市热岛环境中土体温度场、强度和变形的数值模拟与图像分析[D].南京:南京大学.
    王思敬,王效宁.1990.根据热释光温度确定滑坡滑动速度的研究[J].科学通报,35(18):1409-1412.
    夏浩,胡新丽,唐辉明,等.2017.红外热像技术在滑坡物理模型试验中的应用[J].岩土力学,38(1):291-299.
    邢爱国,殷跃平,齐超,等.2012.高速远程滑坡气垫效应的风洞模拟试验研究[J].上海交通大学学报,46(1):1642-1646.
    许强,董秀军.2011.汶川地震大型滑坡成因模式[J].地球科学,36(6):1134-1142.
    许强,李为乐.2010.汶川地震诱发大型滑坡分布规律研究[J].工程地质学报,18(6):818-826.
    张明,殷跃平,吴树仁,等.2010.高速远程滑坡-碎屑流运动机理研究发展现状与展望[J].工程地质学报,18(6):805-817.
    张伟锋,黄润秋,裴向军.2015.大光包滑坡运动特征及其过程分析[J].工程地质学报,23(5):866-885.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700