用户名: 密码: 验证码:
考虑溶洞空间形态的岩溶桩基稳定性分析方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Stability Analysis Method of Pile Foundation in Karst Area Base on Cavern Spatial Form
  • 作者:张永杰 ; 邓俊强 ; 杨兴山 ; 赵明华 ; 王桂尧
  • 英文作者:ZHANG Yong-jie;DENG Jun-qiang;YANG Xing-shan;ZHAO Ming-hua;WANG Gui-yao;School of Civil Engineering, Changsha University of Science & Technology;Institute of Geotechnical Engineering, Hunan University;
  • 关键词:道路工程 ; 岩溶桩基 ; 空间形态 ; 安全厚度 ; 破坏模式
  • 英文关键词:road engineering;;pile foundation in karst area;;spatial form;;safe thickness;;failure mode
  • 中文刊名:中国公路学报
  • 英文刊名:China Journal of Highway and Transport
  • 机构:长沙理工大学土木工程学院;湖南大学岩土工程研究所;
  • 出版日期:2019-01-15
  • 出版单位:中国公路学报
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金项目(51878071);; 湖南省交通运输厅科技计划项目(201533);; 湖南省教育厅优秀青年基金项目(15hnjy021);; 长沙理工大学土木工程优势特色重点学科创新性基金项目(18ZDXK03);; 宁波市交通运输科技项目(201503)
  • 语种:中文;
  • 页:41-49
  • 页数:9
  • CN:61-1313/U
  • ISSN:1001-7372
  • 分类号:U443.15;P642.25
摘要
岩溶桩基的应用随岩溶地区交通工程建设的快速发展而越来越普遍,如何评价桩端岩溶顶板稳定性成为岩溶桩基设计的关键问题之一,针对目前桩端岩溶顶板稳定性分析平面假设的不完善性,考虑溶蚀作用形成的溶洞所具有的空间形态特征进行岩溶桩基稳定性分析。首先,将基桩作用下的岩溶顶板分别简化为固支梁、抛物线拱、圆拱与固支双向板等承载模型,采用结构力学与双向板分析理论建立不同模型的桩端岩溶顶板抗弯最小安全厚度计算方法;其次,通过计算结果对比分析,揭示岩溶顶板最小安全厚度随矢高的变化规律;在分析岩溶顶板冲切破坏与剪切破坏形式的基础上,探讨桩端岩溶顶板破坏模式的控制因素及其影响规律,进而获得桩端荷载、石灰岩抗拉强度、溶洞跨度与矢高等因素对桩端岩溶顶板承载特性的影响规律;然后,基于溶洞钻孔探测所得地质勘查信息构建岩溶桩基稳定性分析流程,提出考虑溶洞空间形态特征的岩溶桩基稳定性分析方法;最后,通过工程案例具体分析桩端岩溶顶板最小安全厚度及其破坏模式随矢高的变化规律。研究结果表明:桩端岩溶顶板破坏模式不仅与溶洞跨度、桩径有关,而且与溶洞形态及其矢高也密切相关,此外,石灰岩抗拉强度对岩溶顶板稳定性的影响同样较大,详细全面的工程勘察资料能使桩端岩溶顶板稳定性分析结果更接近实际情况。
        Pile foundations are increasingly used in karst areas with the rapid development of traffic engineering construction. However, evaluating the stability of the karst cave roof underneath the bottom of the pile has become one of the key problems of pile foundation design in karst areas. The current stability analysis method for the karst cave roof underneath the bottom of the pile with the plane cross-section assumption is unsuitable. The stability of pile foundations in karst areas should be analyzed based on the spatial characteristics of the karst cave formed by dissolution. Firstly, the karst cave roof bearing the pressure from the pile is simplified as a clamped beam model, parabolic arch model, arch model, two-way slab model, or shell model. Then, calculation methods for the minimum safe thickness of the karst cave roof controlled by bending resistance are proposed based on structural mechanics and bidirectional plate theory. Secondly, the changing requirements for minimum safe thickness of the karst cave roof along with different arch heights are obtained from the contrastive analysis of calculation results. The factors controlling the failure mode of the karst cave roof and their effects are discussed by analyzing the punching failure, shearing failure, and bending failure caused by pressure from the pile bottom. The effects of the load underneath the pile bottom, tensile strength of limestone, and span and rise of the karst cave on the bearing capacity of the cavern roof are also discussed. Thirdly, the stability analysis process for pile foundations in karst areas is presented with the geological exploration information got from karst cave drilling. The stability analysis method for pile foundations in karst areas that considers the spatial characteristics of the cavern can then be obtained. Finally, the changing rules for minimum safe thickness of the karst cave roof and its failure mode with different arch heights are analyzed through one engineering case. The results show that the failure mode of the karst cave roof is affected by the span of the karst cave, pile diameter, spatial form, and rise of the karst cave. The influence of the tensile strength of the limestone is also significant. Detailed and comprehensive engineering survey data can make analysis results of the karst cave roof underneath the pile bottom close to the actual values.
引文
[1] JGJ 94—2008,建筑桩基技术规范[S]. JGJ 94— 2008, Technical Code for Building Pile Foundations [S].
    [2] JTG D63—2007,公路桥涵地基与基础设计规范[S]. JTG D63—2007, Code of Design of Ground Base and Foundation of Highway Bridges and Culverts [S].
    [3] 黎斌,范秋雁,秦风荣.岩溶地区溶洞顶板稳定性分析[J]. 岩石力学与工程学报,2002,21(4):532-536. LI Bin, FAN Qiu-yan, QIN Feng-rong. Analysis on Roof Stability of Karst Cave in Karst Areas [J]. Chinese Journal of Rock Mechanics and Engineering,2002, 21 (4): 532-536.
    [4] 刘之葵,梁金城,朱寿增,等.岩溶区含溶洞岩石地基稳定性分析[J].岩土工程学报,2003,25(5):629-633. LIU Zhi-kui, LIANG Jin-cheng, ZHU Shou-zeng, et al. Stability Analysis of Rock Foundation with Cave in Karst Area [J]. Chinese Journal of Geotechnical Engineering, 2003, 25 (5): 629-633.
    [5] 赵明华,曹文贵,何鹏祥,等.岩溶及采空区桥梁桩基桩端岩层安全厚度研究[J].岩土力学,2004,25(1):64-68. ZHAO Ming-hua, CAO Wen-gui, HE Peng-xiang, et al. Study on Safe Thickness of Rock Mass at End of Bridge Foundation's Pile in Karst and Worked-out Mine area [J]. Rock and Soil Mechanics,2004, 25(1): 64-68.
    [6] 赵明华,蒋冲,曹文贵.岩溶区嵌岩桩承载力及其下伏溶洞顶板安全厚度的研究[J]. 岩土工程学报,2007,29(11):1618-1622. ZHAO Ming-hua,JIANG Chong,CAO Wen-gui. Study on Bearing Capacity of Rock-socked Pile and Safe Thickness of Cave Roofs in Karst Region [J]. Chinese Journal of Geotechnical Engineering, 2007, 29 (11): 1618-1622.
    [7] 赵明华,雷勇,张锐.岩溶区桩基冲切破坏模式及安全厚度研究[J].岩土力学,2012,33(2):524-530. ZHAO Ming-hua, LEI Yong, ZHANG Rui. Study of Punching Failure Mode and Safe Thickness of Pile Foundation in Karst Region [J]. Rock and Soil Mechanics, 2012, 33 (2): 524-530.
    [8] 汪华斌,刘志峰,赵文锋,等.桥梁桩基荷载下溶洞顶板稳定性研究[J].岩石力学与工程学报,2013,32(增2):3650-3657. WANG Hua-bin,LIU Zhi-feng,ZHAO Wen-feng,et al. Research on Stability of Cave Roof Under Pile Loading in Bridge Construction Engineering [J]. Chinese Journal of Rock Mechanics and Engineering,2013, 32 (S2): 3650-3657.
    [9] 柏华军.考虑溶洞顶板自重时桩端持力岩层安全厚度计算方法[J].岩土力学,2016,37(10):2945-2952. BAI Hua-jun. A Method for Calculating the Safety Rock Thickness of Pile Bearing Strata with Considering Deadweight of Karst Cave Roof [J]. Rock and Soil Mechanics, 2016, 37 (10): 2945-2952.
    [10] 赵明华,程晔,曹文贵.桥梁基桩桩端溶洞顶板稳定性的模糊分析研究[J].岩石力学与工程学报,2005,24(8):1376-1383. ZHAO Ming-hua, CHENG Ye, CAO Wen-gui. Fuzzy Method for the Stability Analysis of Cave Roof Under Pile Tip in Karst Region [J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(8):1376-1383.
    [11] 曹文贵,颜艳芬,张永杰.基桩桩端岩溶顶板稳定性模糊能度可靠性分析方法[J].岩石力学与工程学报,2009,28(1):88-94. CAO Wen-gui,YAN Yan-fen,ZHANG Yong-jie. Fuzzy Possibilistic Reliability Analysis Method for Stability of Karst Roof Under Pile Tip [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28 (1): 88-94.
    [12] 曹文贵,李媛,翟友成.基于 Info-Gap理论的基桩下伏岩溶顶板稳定性的主动分析方法[J].岩石力学与工程学报,2013,32(2):393-400. CAO Wen-gui, LI Yuan, ZHAI You-cheng. Active Analysis Method for Stability of Karst Roof Under Foundation Pile Based on Info-gap Theory [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32 (2): 393-400.
    [13] 张慧乐,张智浩,王述红,等.岩溶区嵌岩桩的试验研究与分析[J].土木工程学报,2013,46(1):92-103. ZHANG Hui-le, ZHANG Zhi-hao, WANG Shu-hong, et al. Experimental Study and Analysis on Rock-socketed Pile in Karst Area [J]. China Civil Engineering Journal, 2013, 46 (1): 92-103.
    [14] 唐咸力.岩溶区基桩下伏溶洞顶板竖向承载机理及其试验研究[D].长沙:湖南大学,2016. TANG Xian-li. The Bearing Capacity and Experimental Research of Karst Cave Roof Under Pile Tip Foundation in Karst Area [D]. Changsha: Hunan University, 2016.
    [15] GOTMAN N Z. Analysis of Anti-karst Foundations for Buildings and Structures [J]. Soil Mechanics and Foundation Engineering, 2008, 45 (1): 23-29.
    [16] ANCHUELA ó P, JULIáN P L, SAINZ A M C,et al. Three Dimensional Characterization of Complex Mantled Karst Structures. Decision Making and Engineering Solutions Applied to a Road Overlying Evaporite Rocks in the Ebro Basin (Spain) [J]. Engineering Geology, 2015, 193: 158-172.
    [17] 张文福,马昌恒.局部荷载作用下四边固支矩形板的计算用表[J].大庆石油学院学报,2006,30(12):66-69. ZHANG Wen-fu, MA Chang-heng. Design Table of Rectangle Plate Fixed at Four Sides Under Local Loads [J]. Journal of Daqing Petroleum Institute, 2006, 30 (12): 66-69.
    [18] 吴洪洋.均布荷载作用下四边固支板的一种逼近解法[J].贵州工业大学学报:自然科学版,2000,29(1):32-35. WU Hong-yang. An Asymptotic Approximation Solution of the Board Under the Average Loads Action [J]. Journal of Guizhou University of Technology: Natural Science Edition, 2000, 29 (1): 32-35.
    [19] 《工程地质手册》编委会.工程地质手册[M].4版.北京:中国建筑工业出版社,2007. Engineering Geological Manual Editorial Committee. Engineering Geological Manual [M]. 4th ed. Beijing: China Building Industry Press, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700