用户名: 密码: 验证码:
喀斯特植被演替过程土壤丛枝菌根真菌(AMF)多样性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Species diversity of soil arbuscular mycorrhizal fungi in karst vegetation succession process
  • 作者:林艳 ; 何跃军 ; 何敏红 ; 吴春玉 ; 方正圆 ; 韩勖 ; 徐鑫洋 ; 王世雄
  • 英文作者:LIN Yan;HE Yuejun;HE Minhong;WU Chunyu;FANG Zhengyuan;HAN Xu;XU Xinyang;WANG Shixiong;College of Forestry in Guizhou University;
  • 关键词:喀斯特 ; 植被演替 ; 从枝菌根真菌 ; 多样性
  • 英文关键词:karst;;vegetation succession;;arbuscular mycorrhizal fungi;;diversity
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:贵州大学林学院;
  • 出版日期:2019-03-21 09:05
  • 出版单位:生态学报
  • 年:2019
  • 期:11
  • 基金:国家自然科学基金项目(31660156,31360106);; 贵州省科技计划项目(黔科合[2016] 2805号);贵州省科技计划项目(黔科合平台人才[2017]5788号)
  • 语种:中文;
  • 页:334-344
  • 页数:11
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:S154.3
摘要
喀斯特生态系统维持了丰富的微生物多样性,丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)结构和组成会随喀斯特植被演替而改变。以贵州贵阳花溪、毕节织金和关岭花江典型喀斯特区域按时空替代法采集了乔木林、灌木林和草本群落样地土壤,采用Illumina HiSeq分子测序技术,通过OTU聚类分析、物种注释及数据库比对,探索了喀斯特不同演替阶段土壤AMF物种多样性。结果表明:(1)喀斯特生境土壤获得球囊菌门Glomeromycota OTU为275个,分属于4目8科13属19种,属水平上AMF丰度表明根内根孢囊霉属Rhizophagus为优势属,花江拥有最高AMF丰富度,缩隔球囊霉Septoglomus constrictum、根内根孢囊霉Rhizophagus intraradices、Claroideoglomus sp. MIB8381和稀有内养囊霉Entrophospora infrequens均分布于各样地的不同植被演替阶段,为常见种。(2)AM真菌多样性Shannon指数与Simpson指数在不同演替阶段表现为花溪:乔木≈灌木>草本(P<0.05)、花江:灌木≈草本>乔木(P<0.05)、织金:乔木>灌木>草本,但差异不显著,Chao1和Abundance-based coverag estimator(ACE)指数表现为花江灌木≈草地>乔木(P<0.05)。(3)Spearman相关性分析表明土壤全磷与AMF ACE指数显著负相关,且与Chao1指数极显著负相关;速效磷与Shannon和Simpson指数显著负相关。(4)典范对应分析(Canonical Correlation Analysis,CCA)表明土壤全氮、速效氮、有机质、全磷和速效钾与AMF群落分布有显著相关性。结果表明喀斯特植被演替过程中土壤丛枝菌根真菌多样性随着演替进行或升高或降低,无一致变化规律,并与土壤理化性质关系密切,其中以磷的影响最大。
        The karst ecosystem maintains rich microbial diversity, and the composition and structure of arbuscular mycorrhizal fungi changes with karst vegetation succession. In this experiment, we used a space-time substitution method to collect soil from tree, bush, and herb communities from Huaxi Guiyang, Zhijin Bijie, and Huajiang Guanling from a typical karst area located in Guizhou. Using Illumina HiSeq molecular sequencing technology, we performed an operation taxonomic unit(OTU) clustering analysis and compared the annotated species with those in a database to explore the soil arbuscular mycorrhizal fungi(AMF) species diversity during the different karst succession stages. There were 275 Glomeromycota OTUs in 19 species from 4 orders, 8 families, and 13 genera in the karst habitat soil. AMF abundance at the genus level showed that Rhizophagus was the dominant genus, and Huajiang had the highest AMF richness. The common species Septoglomus constrictum, Rhizophagus intraradices, Claroideoglomus sp.MIB8381,and Entrophospora infrequens were distributed at different stages of the vegetation succession at every sampling site. The Shannon and Simpson′s indices of AMF changed at the different stages of succession as follows: in Huaxi, tree/bush > herb(P<0.05); in Huajiang, bush/herb > tree(P<0.05); and in Zhijin, tree > bush > herb, but these relationships were not significantly different. The Chao1 and abundance-based coverage estimation(ACE) indices showed that in Huajiang, bush/herb > tree(P<0.05). The Spearman correlation analysis showed that soil total phosphorus was significantly and negatively correlated with the ACE index of AMF, and it was negatively correlated with the Chao1 index. Available phosphorus was negatively correlated with the Shannon and Simpson′s indices. The canonical correlation analysis showed that soil total nitrogen, available nitrogen, organic matter, total phosphorus, and available potassium were significantly correlated with the community distribution of AMF. The results showed that although there was no uniform variation law, the diversity of soil AMF increased or decreased with the process of karst vegetation succession, which was closely related to the physicochemical properties of the soil, and the influence of phosphorus was the greatest.
引文
[1]Wang B,Qiu Y L.Phylogenetic distribution and evolution of mycorrhizas in land plants.Mycorrhiza,2006,16(5):299-363.
    [2]Smith S E,Read D J.Mycorrhizal Symbiosis.London:Academic Press,1997:1-20.
    [3]van der Heijden M G A,Bardgett R D,van Straalen N M.The unseen majority:soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems.Ecology Letters,2010,11(3):296-310.
    [4]刘敏,峥嵘,白淑兰,王琚钢,李龙,段国珍.丛枝菌根真菌物种多样性研究进展.微生物学通报,2016,43(8):1836-1843.
    [5]彭旭东,戴全厚,李昌兰.中国西南喀斯特坡地水土流失/漏失过程与机理研究进展.水土保持学报,2017,31(5):1-8.
    [6]宋同清,彭晚霞,杜虎,王克林,曾馥平.中国西南喀斯特石漠化时空演变特征、发生机制与调控对策.生态学报,2014,34(18):5328-5341.
    [7]陈圣子,周忠发,闫利会.人为干预对石漠化治理过程中生态系统健康的影响.水土保持研究,2016,23(2):213-219.
    [8]邢丹,王震洪,张爱民,付文婷,韩世玉.菌根桑恢复喀斯特石漠化地区的研究探讨(英文).Agricultural Science&Technology,2014,15(11):1998-2002.
    [9]Chen K,Shi S M,Yang X H,Huang X Z.Contribution of arbuscular mycorrhizal inoculation to the growth and photosynthesis of mulberry in Karst Rocky Desertification Area.Applied Mechanics and Materials,2014,488-489:769-773.
    [10]杨应,蒋长洪,何跃军,欧静,王鹏鹏,司建朋,何敏红,林艳.丛枝菌根网对喀斯特适生植物氮、磷化学计量特征的影响.植物生理学报,2017,53(12):2078-2090.
    [11]吴春玉,蒋长洪,谢佩耘,何跃军,杨俊松.干旱胁迫对接种AMF的香樟幼苗生物量分配及生长的影响.重庆师范大学学报:自然科学版,2015,32(6):109-115.
    [12]何跃军,钟章成.喀斯特土壤上香樟幼苗接种不同AM真菌后的耐旱性效应.植物研究,2011,31(5):597-602.
    [13]何跃军,吴春玉,何丙辉,丁贵杰,孙学广,高秀兵.喀斯特不同植被恢复阶段土壤AMF组成及多样性研究.水土保持学报,2016,30(5):305-309,321-321.
    [14]魏源,王世杰,刘秀明,黄天志.喀斯特地区丛枝菌根真菌遗传多样性.生态学杂志,2011,30(10):2220-2226.
    [15]魏源,王世杰,刘秀明,黄天志.不同喀斯特小生境中土壤丛枝菌根真菌的遗传多样性.植物生态学报,2011,35(10):1083-1090.
    [16]梁月明,苏以荣,何寻阳,陈香碧.岩性对喀斯特灌丛土壤固氮菌与丛枝菌根真菌群落结构及丰度的影响.环境科学,2017,38(3):1253-1261.
    [17]魏源,王世杰,刘秀明,黄天志.丛枝菌根真菌及在石漠化治理中的应用探讨.地球与环境,2012,40(1):84-92.
    [18]Barni E,Siniscalco C.Vegetation dynamics and arbuscular mycorrhiza in old-field successions of the western Italian Alps.Mycorrhiza,2000,10(2):63-72.
    [19]Roy J,Reichel R,Brüggemann N,Hempel S,Rillig M C.Succession of arbuscular mycorrhizal fungi along a 52-year agricultural recultivation chronosequence.FEMS Microbiology Ecology,2017,93(9):1-13.
    [20]de León D G,Moora M,?pik M,Neuenkamp L,Gerz M,Jairus T,Vasar M,Bueno C G,Davison J,Zobel M.Symbiont dynamics during ecosystem succession:co-occurring plant and arbuscular mycorrhizal fungal communities.FEMS Microbiology Ecology,2016,92(7):1-9.
    [21]Xiang D,Chen B D,Li H.Specificity and selectivity of arbuscular mycorrhizal fungal polymerase chain reaction primers in soil samples by clone library analyses.Acta Agriculturae Scandinavica,Section B-Soil&Plant Science,2015,66(4):333-339.
    [22]De Beenhouwer M,Van Geel M,Ceulemans T,Muleta D,Lievens B,Honnay O.Changing soil characteristics alter the arbuscular mycorrhizal fungi communities of Arabica coffee(Coffea arabica)in Ethiopia across a management intensity gradient.Soil Biology and Biochemistry,2015,91:133-139.
    [23]Liang Y M,He X Y,Chen C Y,Feng S Z,Liu L,Chen X B,Zhao Z W,Su Y R.Influence of plant communities and soil properties during natural vegetation restoration on arbuscular mycorrhizal fungal communities in a karst region.Ecological Engineering,2015,82:57-65.
    [24]Van Geel M,Ceustermans A,Van Hemelrijck W,Lievens B,Honnay O.Decrease in diversity and changes in community composition of arbuscular mycorrhizal fungi in roots of apple trees with increasing orchard management intensity across a regional scale.Molecular Ecology,2015,24(4):941-952.
    [25]Dai M L,Hamel C,Bainard L D,Arnaud M S,Grant C A,Lupwayi N Z,Malhi S S,Lemke R.Negative and positive contributions of arbuscular mycorrhizal fungal taxa to wheat production and nutrient uptake efficiency in organic and conventional systems in the Canadian prairie.Soil Biology and Biochemistry,2014,74:156-166.
    [26]Magoc T,Salzberg S L.FLASH:fast length adjustment of short reads to improve genome assemblies.Bioinformatics,2011,27(21):2957-2963.
    [27]Bokulich N A,Subramanian S,Faith J J,Gevers D,Gordon J I,Knight R,Mills D A,Caporaso J G.Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing.Nature Methods,2013,10(1):57-59.
    [28]Caporaso J G,Kuczynski J,Stombaugh J,Bittinger K,Bushman F D,Costello E K,Fierer N,Pe1a A G,Goodrich J K,Gordon J I,Huttley GA,Kelley S T,Knights D,Koenig J E,Ley R E,Lozupone C A,Mc Donald D,Muegge B D,Pirrung M,Reeder J,Sevinsky J R,Turnbaugh PJ,Walters W A,Widmann J,Yatsunenko T,Zaneveld J,Knight R.QIIME allows analysis of high-throughput community sequencing data.Nature Methods,2010,7(5):335-336.
    [29]Edgar R C,Haas B J,Clemente J C,Quince C,Knight R.UCHIME improves sensitivity and speed of chimera detection.Bioinformatics,2011,27(16):2194-2200.
    [30]Haas B J,Gevers D,Earl A M,Feldgarden M,Ward D V,Giannoukos G,Ciulla D,Tabbaa D,Highlander S K,Sodergren E,MethéB,De Santis T Z,Petrosino J F,Knight R,Birren B W.Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCRamplicons.Genome Research,2011,21(3):494-504.
    [31]Edgar R C.UPARSE:highly accurate OTU sequences from microbial amplicon reads.Nature Methods,2013,10(10):996-998.
    [32]Altschul S F,Gish W,Miller W,Myers E W,Lipman D J.Basic local alignment search tool.Journal of Molecular Biology,1990,215(3):403-410.
    [33]K?ljalg U,Nilsson R H,Abarenkov K,Tedersoo L,Taylor A F S,Bahram M,Bates S T,Bruns T D,Bengtsson-Palme J,Callaghan T M,Douglas B,Drenkhan T,Eberhardt U,Due1as M,Grebenc T,Griffith G W,Hartmann M,Kirk P M,Kohout P,Larsson E,Lindahl B D,Lücking R,Martín M P,Matheny P B,Nguyen N H,Niskanen T,Oja J,Peay K G,Peintner U,Peterson M,P7ldmaa K,Saag L,Saar I,Schüler A,Scott J A,Senés C,Smith M E,Suija A,Taylor D L,Telleria M T,Weiss M,Larsson K H.Towards a unified paradigm for sequence-based identification of fungi.Molecular Ecology,2013,22(21):5271-5277.
    [34]Edgar R C.MUSCLE:multiple sequence alignment with high accuracy and high throughput.Nucleic Acids Research,2004,32(5):1792-1797.
    [35]张韫.土壤·水·植物理化分析教程.北京:中国林业出版社,2011.
    [36]王幼珊,刘润进.球囊菌门丛枝菌根真菌最新分类系统菌种名录.菌物学报,2017,36(7):820-850.
    [37]Likar M,Hancevi? K,Radi? T,Regvar M.Distribution and diversity of arbuscular mycorrhizal fungi in grapevines from production vineyards along the eastern Adriatic coast.Mycorrhiza,2013,23(3):209-219.
    [38]林先贵,胡君利,戴珏,王发园,冯有智.丛枝菌根真菌群落结构与多样性研究方法概述及实例比较.应用与环境生物学报,2017,23(2):343-350.
    [39]向丹,徐天乐,李欢,陈保冬.丛枝菌根真菌的生态分布及其影响因子研究进展.生态学报,2017,37(11):3597-3606.
    [40]刘永俊,冯虎元.不同演替阶段人工柠条林丛枝菌根真菌分子多样性研究.中国沙漠,2009,29(6):1141-1147.
    [41]Zangaro W,Alves R A,Lescano L E,Ansanelo A P,Nogueira M A.Investment in fine roots and arbuscular mycorrhizal fungi decrease during succession in Three Brazilian Ecosystems.Biotropica,2012,44(2):141-150.
    [42]钟凯,袁玉清,赵洪海,王淼焱,刘润进.泰山丛枝菌根真菌群落结构特征.菌物学报,2010,29(1):44-50.
    [43]Hiiesalu I,P?rtel M,Davison J,Gerhold P,Metsis M,Moora M,?pik M,Vasar M,Zobel M,Wilson S D.Species richness of arbuscular mycorrhizal fungi:associations with grassland plant richness and biomass.New Phytologist,2014,203(1):233-244.
    [44]Xu T L,Veresoglou S D,Chen Y L,Rillig M C,Xiang D,Ondrej X D,Hao Z P,Liu L,Deng Y,Hu Y J,Chen W P,Wang J T,He J Z,Chen B D.Plant community,geographic distance and abiotic factors play different roles in predicting AMF biogeography at the regional scale in northern China.Environmental Microbiology Reports,2016,8(6):1048-1057.
    [45]Alguacil M M,Torrecillas E,Lozano Z,Roldán A.Arbuscular mycorrhizal fungi communities in a coral cay system(Morrocoy,Venezuela)and their relationships with environmental variables.Science of the Total Environment,2015,505:805-813.
    [46]Xiang D,Verbruggen E,Hu Y J,Veresoglou S D,Rillig M C,Zhou W P,Xu T L,Li H,Hao Z P,Chen Y L,Chen B D.Land use influences arbuscular mycorrhizal fungal communities in the farming-pastoral ecotone of northern China.New Phytologist,2014,204(4):968-978.
    [47]梁月明,苏以荣,何寻阳,陈香碧,胡亚军.喀斯特灌丛土壤丛枝菌根真菌群落结构及丰度的影响因子.环境科学,2017,38(11):4828-4835.
    [48]Gosling P,Mead A,Proctor M,Hammond J P,Bending G D.Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient.New Phytologist,2013,198(2):546-556.
    [49]杨春雪,陈飞,岳英男,阎秀峰.松嫩盐碱草地26种植物根围丛枝菌根真菌多样性特征.草业科学,2015,32(12):2008-2020.
    [50]Tawaraya K,Saito M,Morioka M,Wagatsuma T.Effect of phosphate application to arbuscular mycorrhizal onion on the development and succinate dehydrogenase activity of internal hyphae.Soil Science and Plant Nutrition,1994,40(4):667-673.
    [51]Deepika S,Kothamasi D.Soil moisture-a regulator of arbuscular mycorrhizal fungal community assembly and symbiotic phosphorus uptake.Mycorrhiza,2015,25(1):67-75.
    [52]张玉洁,贺学礼,程春泉,赵金莉,赵丽莉.新疆沙冬青AM真菌群落结构与遗传多样性分析.菌物学报,2015,34(3):375-385.
    [53]高鹏,付同刚,王克林,陈洪松,曾馥平.喀斯特峰丛洼地小流域表层土壤养分的空间异质性.农业现代化研究,2013,34(3):362-366.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700