用户名: 密码: 验证码:
不同含水率蚯蚓粪颗粒物料流动性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Flow properties of vermicompost particle with different moisture contents
  • 作者:林嘉聪 ; 罗帅 ; 袁巧霞 ; 曹红亮
  • 英文作者:Lin Jiacong;Luo Shuai;Yuan Qiaoxia;Cao Hongliang;College of Engineering, Huazhong Agricultural University;Key Laboratory of Agricultural Equipment in Mid-lower Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs;
  • 关键词: ; 含水率 ; 蚯蚓粪 ; 摩擦系数 ; 流动性 ; 黏结性能 ; 离散元
  • 英文关键词:manures;;moisture;;vermicompost;;friction coefficient;;flow ability;;bonding properties;;discrete element method(DEM)
  • 中文刊名:农业工程学报
  • 英文刊名:Transactions of the Chinese Society of Agricultural Engineering
  • 机构:华中农业大学工学院;农业农村部长江中下游农业装备重点实验室;
  • 出版日期:2019-05-08
  • 出版单位:农业工程学报
  • 年:2019
  • 期:09
  • 基金:中央高校基本业务科研经费(2662016PY108);; 公益性行业(农业)专项(201303091);; 湖北省自然科学基金(2017CFB159)
  • 语种:中文;
  • 页:229-235
  • 页数:7
  • CN:11-2047/S
  • ISSN:1002-6819
  • 分类号:S224.22
摘要
蚯蚓粪是有机固体废弃物经蚯蚓过腹处理后排出的特殊物料,由于含水率高达40%~60%的同时又能够保持散体细小颗粒的状态,导致流动性参数难以通过常规测试手段得到。为给蚯蚓粪收集、分离、运输等不同阶段机械化作业提供有效的运动摩擦参数,探究含水率变化对蚯蚓粪颗粒流动性参数的影响。研究通过堆积角试验与离散元仿真(Discrete element method,DEM)堆积角虚拟试验相结合的方法,从数值上量化分析了基于牛粪转化后不同含水率25%~65%蚯蚓粪物料的滚动摩擦参数与物料黏结能力。结果表明,显著影响蚯蚓粪堆积角的因素为蚯蚓粪-蚯蚓粪滚动摩擦系数,蚯蚓粪-不锈钢滚动摩擦系数,蚯蚓粪的JKR表面能(Johnson Kendall Roberts surface energy)。随着含水率的增加,蚯蚓粪-蚯蚓粪的滚动摩擦系数由0.135下降至0.110,蚯蚓粪-不锈钢滚动摩擦系数由0.116下降至0.102,两者呈现小幅度下降,内摩擦角由45.81°降至26.10°,而JKR表面能由0.179 J/m~2增加至0.345 J/m~2,增幅显著。含水率低于50%时,随着含水率增加,物料滚动摩擦系数减小,内摩擦角减小,一定程度上有利于物料滚动流动;含水率超过50%时,由于表面能增高,内聚力增大,蚯蚓粪物料之间易发生物料黏结团聚,一定程度上又会阻碍蚯蚓粪的翻滚运动。
        The earthworm processing of waste is recognized as a very sustainable approach for management of organic wastes. The vermicompost resulted from this procession has been proved to be practical and useful in farming, substrate nursery, gas absorbent etc. However, this technology has been widely adopted to treat different organic waste material. Most of scientific investigation in vermicompost concentrates on its nutrient characteristics and microorganism rather than physical properties. The flow ability is key factor for the mechanized operation of vermicomposting. The basic parameters like rolling friction coefficient and surface energy are needed for the equipment design, material calculation, and vermicompost product manufacture. The moisture content of vermicompost can reach 40%-50% under natural condition, even with high moisture content, the vermicompost can still keep the granular condition. Flow parameters, such as friction coefficient, cannot simply test though the normal physical method. In order to provide the quantized flow parameters of vermicompost for mechanization, in this study, vermicompost transformed from pure cow dung by the worm procession was used. The experiments were undertaken in condition of different moisture contents, changing from 25%-65%. The friction coefficient and surface energy were investigated by the method of pile angle simulation and calibration using discrete element method(DEM). First, Plackett-Burman(PB) design was conducted to select the impacted physical frictional parameter factors that have significant influence on pile angle. Then, the steep climbing test was conducted to shorten the parameter ranges from the maximum range of PB design. According to the result of steep climbing test, the response surface methodology(RSM) was carried out to build the model which can reflect the relationship between pile angle and friction coefficients. Besides, for explaining the flow ability of vermicompost in further, the direct shearing test was applied to calculate the internal frictional angle of vermicompost with different moisture contents. The results of experiment indicated that three key factors vermicompost-vermicompost rolling friction coefficient, vermicompost-steel rolling friction coefficient and Johnson Kendall Roberts surface bonding energy(JKR surface energy), significantly affected the pile angle(P<0.05). With the rising of moisture content from 25% to 65%, the vermicompost-vermicompost rolling friction coefficient dropped from 0.135 to 0.110, the vermicompost-steel rolling friction coefficient dropped from 0.116 to 0.102. From the result, the surface energy was the most impact factor in three factors, which changed from 0.179 to 0.345 J/m2. The few rise of moisture content can improve the flow ability of vermicompost significantly under low moisture content condition. When the moisture content was over 50%, the surface energy and the cohesion force were increased, which would restrict the flow movement of vermicompost to some extent. The study is expected to provide numerical parameter reference for the practical application and development of mechanization.
引文
[1]Blouin M,Hodson M E,Delgado E A,et al.A review of earthworm impact on soil function and ecosystem services[J].European Journal of Soil Science,2013,642:161-181.
    [2]Bertrand M,Barot S,Blouin M,et al.Earthworm services for cropping systems:A review[J].Agronomy for Sustainable Development,2015,35:553-567.
    [3]Lim S L,Lee L H,Wu T Y,et al.Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation:Recent overview,greenhouse gases emissions and economic analysis[J].Journal of Cleaner Production,2016,111:262-278.
    [4]赵海涛,狄霖,刘平,等.蚯蚓生物床工程处理对牛粪性质的影响[J].农业工程学报,2011,27(9):255-259.Zhao Haitao,Di Lin,Liu Ping,et al.Effect of earthworm bio-bed treatment on properties of cow manure[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2011,27(9):255-259.(in Chinese with English abstract)
    [5]Edwards C A,Arancon N Q,Sherman R.Vermicultural Technology[M].London:New York:CRC Press,2011.
    [6]李晓明,杨晓红,何新权,等.以蚯蚓为链条的低碳循环农业[J].陕西农业科学,2010(6):95-97.Li Xiaoming,Yang Xiaohong,He Xinquan,et al.Low carbon recycling agriculture by the bridge of earthworm[J].Shaanxi Journal of Agricultural Sciences,2010(6):95-97.(in Chinese with English abstract)
    [7]宋艳晶,刘艳琴,韩立军,等.蚯蚓粪对家禽粪便中主要产臭气微生物的影响[J].家畜生态学报,2008(3):86-89.Song Yanjing,Liu Yanqin,Han Lijun,et al.Selection of enzymolysistechnologic parameter in defatted fly maggot[J].Acta Ecologiae Animalis Domastici,2008(3):86-89.(in Chinese with English abstract)
    [8]孙永明.规模化蚯蚓反应器系统研究[D].北京:中国农业大学,2006.Sun Yongming.Vermicomposting Engineering System for Organic Waste Conversation in Large Scale[D].Beijing:China Agricultural University,2006.(in Chinese with English abstract)
    [9]李云格.蚯蚓粪除臭作用及在肉鸡养殖中的应用[D].北京:中国农业大学,2005.Li Yunge.Deodorization of Wormcast and its Use in Bolier Breeding[D].Beijing:China Agricultural University,2005.(in Chinese with English abstract)
    [10]许永利,张俊英,李富平.蚯蚓粪的综合利用研究现状[J].安徽农业科学,2007(23):7179-7180.Xu Yongli,Zhang Junying,Li Fuping.Research situation of comprehensive utilization of earthworm feces[J].Journal of Anhui Agricultural Science,2007(23):7179-7180.(in Chinese with English abstract)
    [11]孙振钧,孙永明.蚯蚓反应器与废弃物肥料化技术[M].北京:化学工业出版社,2004.
    [12]杨龙元,袁巧霞,刘志刚,等.牛粪好氧和蚯蚓堆肥腐熟料成型基质块制备及育苗试验[J].农业工程学报,2016,32(24):226-233.Yang Longyuan,Yuan Qiaoxia,Liu Zhigang,et al.Experiment on seedling of compressed substrates withcow dung aerobic composting and earthworm cow dung composting[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(24):226-233.(in Chinese with English abstract)
    [13]林嘉聪,刘志刚,袁巧霞,等.蚯蚓分离方法与设备的研究现状[J].中国农业科技导报,2017,19(2):103-109.Lin Jiacong,Liu Zhigang,Yuan Qiaoxia,et al.Research progress on earthworm separating methods and devices[J].Journal of Agricultural Science and Technology,2017,19(2):103-109.(in Chinese with English abstract)
    [14]林嘉聪,刘志刚,邢行,等.不同光照条件下蚯蚓避光性运动与蚓粪机械化分离参数量化分析[J].农业工程学报,2018,34(2):235-241.Lin Jiacong,Liu Zhigang,Xing Hang,et al.Earthworm photophobic movement under different light conditions and quantitative analysis of mechanical separating vermicompost parameters[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2018,34(2):235-241.(in Chinese with English abstract)
    [15]谢洪勇,刘志军.粉体力学与工程[M].北京:化学工业出版社,2007.
    [16]王国强,郝万军,王继军.离散单元法及其在EDEM上的实践[M].西安:西北工业大学出版社,2010.
    [17]龚明.材料物料特性参数标定[R].北京:EDEM用户大会报告,2013.
    [18]韩燕龙,贾国富,唐玉荣,等.颗粒滚动摩擦系数对堆积特性的影响[J].物理学报,2014,63(37):174501-1-7.Han Yanlong,Jia Guofu,Tang Yurong,et al.Discrete element simulation of mechanical properties of wet granular pile[J].Acta Physica Sinica,2014,63(37):174501-1-7(in Chinese with English abstract)
    [19]石林榕,赵武云,孙伟.基于离散元的西北旱区农田土壤颗粒接触模型和参数标定[J].农业工程学报,2017,33(21):181-187.Shi Linrong,Zhao Wuyun,Sun Wei.Parameter calibration of soil particles contact model of farmland soil in northwest arid regionbased on discrete element method[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(21):181-187.(in Chinese with English abstract)
    [20]王宪良,胡红,王庆杰,等.基于离散元的土壤模型参数标定方法[J].农业机械学报,2017,48(12):78-85.Wang Xianliang,Hu Hong,Wang Qingjie,et al.Calibration method of soil contact characteristic parameters based on DEM theory[J].Transactions of the Chinese Society for Agricultural Machinery,2017,48(12):78-85.(in Chinese with English abstract)
    [21]武涛,黄伟凤,陈学深,等.考虑颗粒间黏结力的黏性土壤离散元模型参数标定[J].华南农业大学学报,2017,38(3):93-98.Wu Tao,Huang Weifeng,Chen Xueshen,et al.Calibration of discrete element model parameters for cohesive soil considering the cohesion between particles[J].Journal of South China Agricultural University,2017,38(3):93-98.(in Chinese with English abstract)
    [22]王云霞,梁志杰,张东兴,等.基于离散元的玉米种子颗粒模型种间接触参数标定[J].农业工程学报,2016,32(22):36-42.Wang Yunxia,Liang Zhijie,Zhang Dongxing,et al.Calibration method of contact characteristic parameters for corn seeds based on EDEM[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(22):36-42.(in Chinese with English abstract)
    [23]张甘霖,龚子同.土壤调查试验室分析方法[M].北京:科学出版社,2012.
    [24]Johnson K L,Kendall K,Robert A D.Surface energy and contact of elastic solids[J].Proceedings of The Royal Society A,1971,324:301-313.
    [25]黄松元.散体力学[M].北京:机械工业出版社,1993.
    [26]Thomas Roessler,AndréKatterfeld.Scaling of the angle of repose test and its influence on the calibration of DEMparameters using up scaled particles[J].Power Technology,2018,330:58-66.
    [27]任露泉.试验设计与优化[M].北京:科学出版社,2015.
    [28]任露泉.土壤黏附力学[M].北京:机械工业出版社,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700