用户名: 密码: 验证码:
基于微生物视角的耕地土壤质量综合评价——以A县土地整治区为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comprehensive Evaluation on Cultivated Land Soil Quality from the Perspective of Microorganism: A Case Study of A County
  • 作者:林耀奔 ; 叶艳妹 ; 吴次芳 ; 胡一鸣 ; 施昊坤 ; 王巧若
  • 英文作者:LIN Yaoben;YE Yanmei;WU Cifang;HU Yiming;SHI Haokun;WANG Qiaoruo;Land Academy for National Development(LAND), Zhejiang University;Land Ecological Restoration Engineering Technology Research Center of Shandong Province;
  • 关键词:土地整治 ; 微生物 ; 土壤质量 ; 重金属 ; 高通量测序技术
  • 英文关键词:land consolidation;;microbes;;soil quality;;heavy metals;;high-throughput sequencing technology
  • 中文刊名:中国土地科学
  • 英文刊名:China Land Science
  • 机构:浙江大学土地与国家发展研究院;山东省土地生态修复工程技术研究中心;
  • 出版日期:2019-06-15
  • 出版单位:中国土地科学
  • 年:2019
  • 期:06
  • 基金:山东省盐碱地综合开发示范项目;; 山东黄河三角洲土地利用和生态工程技术研究中心项目;; 国家社会科学基金重大项目(14ZDA039)
  • 语种:中文;
  • 页:98-105
  • 页数:8
  • CN:11-2640/F
  • ISSN:1001-8158
  • 分类号:X825;F323.211
摘要
研究目的:为全面真实地反映耕地土壤质量水平,构建涵盖土壤理化性质、微生物特征以及重金属污染等指标的综合评价模型,以实现土地整治区耕地土壤质量的科学评估。研究方法:最小数据集(MDS)、土壤实验以及DNA高通量测序技术。研究结果:(1)研究区内耕地土壤质量水平不是很高(SQ<0.6),并受到不同程度的重金属污染,尤其是Cr污染(GI>3);(2)土地整治可以显著提高土壤微生物特征指标和土壤有机质含量,并有效降低重金属污染水平;(3)综合整治和传统耕作下的耕地分别具有最高(SQave=0.53)和最低(SQave=0.41)的土壤质量水平。研究结论:从微生物视角构建耕地土壤质量评价模型,有助于提高耕地资源的生态保护意识,可以为耕地综合效益评估和土地整治技术创新提供参考。
        In order to comprehensively and accurately reflect the soil quality of cultivated land, it is necessary to construct a comprehensive evaluation model covering the physical and chemical properties of the soil, microbial characteristics and heavy metal pollution to achieve a scientific evaluation on the soil quality of cultivated land in the land consolidation area. The research methods include minimum data set(MDS), soil experiments and DNA high-throughput sequencing technology. The results showed that: 1)the soil quality of cultivated land in the study area was not very high(SQ<0.6),and it was polluted by heavy metals to different degrees, especially Cr(GI>3). 2)Land consolidation significantly improved soil microbial characteristics and soil organic matter content, and effectively reduced heavy metal pollution levels. 3)The cultivated land under comprehensive consolidation and traditional tillage had the highest(SQ_(ave)=0.53) and lowest(SQ_(ave)=0.41) soil quality levels, respectively. It concluded that constructing the soil quality evaluation model from the perspective of microbiology benefits the improving of ecological protection awareness of cultivated land resources,and provides the reference for the comprehensive benefit evaluation on cultivated land and the innovation of land consolidation technology.
引文
[1]孔祥斌,张蚌蚌,温良友,等.基于要素-过程-功能的耕地质量理论认识及其研究趋势[J].中国土地科学,2018,32(9):14-20.
    [2]侯现慧,王占岐,杨俊,等.基于产能核算和土地质量地球化学评估的县域基本农田布局研究[J].中国土地科学,2016,30(1):89-97.
    [3]李光宇,吴次芳.土壤微生物研究在农田质量评价中的应用[J].土壤学报,2018,55(3):543-556.
    [4]陈正发,史东梅,金慧芳,等.基于土壤管理评估框架的云南坡耕地耕层土壤质量评价[J].农业工程学报,2019,35(3):256-267.
    [5]WANG DAWEI, BAI JUNHONG, WANG WEI, et al.Comprehensive assessment of soil quality for different wetlands in a Chinese delta[J]. Land Degradation&Development, 2018, 29(10):3783-3794.
    [6]LI HUIXIN, LI XIANPING, LIU CHUNLIANG, et al.Similar positive effects of beneficial bacteria, nematodes and earthworms on soil quality and productivity[J]. Applied Soil Ecology, 2018, 130:202-208.
    [7]HOZZEIN W N, ABUELSOUD W, WADAAN MAM, et al.Exploring the potential of actinomycetes in improving soil fertility and grain quality of economically important cereals[J]. Sci Total Environ, 2019, 651:2787-2798.
    [8]许云翔,何莉莉,刘玉学,等.施用生物炭6年后对稻田土壤酶活性及其肥力的影响[J].应用生态学报,2019,30(4):1-11.
    [9]LI J, XIN Z, YAN J, et al. Physicochemical and microbiological assessment of soil quality on a chronosequence of a mine reclamation site[J]. European Journal of Soil Science, 2018,69(6):1056-1067.
    [10]金慧芳,史东梅,陈正发,等.基于聚类及PCA分析的红壤坡耕地耕层土壤质量评价指标[J].农业工程学报,2018,34(7):155-164.
    [11]王淇韬,孔祥斌,郧文聚,等.新时期耕地质量定级方法研究及应用——以河北省平山县为例[J].中国土地科学,2018,32(8):59-66.
    [12]刘春早,黄益宗,雷鸣,等.湘江流域土壤重金属污染及其生态环境风险评价[J].环境科学,2012,33(1):260-265.
    [13]ALSALEH KAM, MEUSER H, USMAN ARA, et al. A comparison of two digestion methods for assessing heavy metals level in urban soils influenced by mining and industrial activities[J]. J Environ Manage, 2018, 206:731-739.
    [14]SHAO DIWEI, ZHAN YU, ZHOU WENJUN, et al. Current status and temporal trend of heavy metals in farmland soil of the Yangtze River Delta Region:field survey and metaanalysis[J]. Environmental Pollution, 2016, 219:329-336.
    [15]LEGRAND FABIENNE, PICOT ADELINE, COBO-DIAZ JOSE FRANCISCO, et al. Effect of tillage and static abiotic soil properties on microbial diversity[J]. Applied Soil Ecology, 2018, 132:135-145.
    [16]YU XUAN, YANG LIN, FEI SHIXUAN, et al. Effect of soil layer and plant-soil interaction on soil microbial diversity and function after canopy gap disturbance[J]. Forests, 2018,9(11):680.
    [17]SONG XIAODONG, YANG FAN, JU BING, et al. The influence of the conversion of grassland to cropland on changes in soil organic carbon and total nitrogen stocks in the Songnen Plain of northeast China[J]. Catena, 2018, 171:588-601.
    [18]NOTTINGHAM ANDREW T, FIERER NOAH, TURNER BENJAMIN L, et al. Microbes follow Humboldt:temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes[J]. Ecology, 2018, 99(11):2455-2466.
    [19]WONGKELVIN,SHAWTIMOTHYI,OLADEINDE ADELUMOLA, et al. Rapid microbiome changes in freshly deposited cow feces under field conditions[J]. Frontiers in Microbiology, 2016:7(500).
    [20]邓翠,吕茂奎,曾敏,等.红壤侵蚀区植被恢复对土壤呼吸及其温度敏感性的影响[J].土壤学报,2019(1):1-13.
    [21]MURUGAN RAJASEKARAN, DJUKIC IKA, KEIBLINGER KATHARINA, et al. Spatial distribution of microbial biomass and residues across soil aggregate fractions at different elevations in the Central Austrian Alps[J]. Geoderma, 2019,339:1-8.
    [22]WU CHUNSHENG, LIU QINGSHENG, LIU GAOHUAN, et al. Soil quality assessment in Yellow River Delta:establishing a minimum data set and fuzzy logic model[J]. Geoderma,2019,334:82-89.
    [23]范允慧,王艳青.浙江省四大平原区土壤元素背景值特征[J].物探与化探,2009,33(2):132-134.
    [24]LI RUIRUI, KAN SHASHA, ZHU MENGKE, et al. Effect of different vegetation restoration types on fundamental parameters, structural characteristics and the soil quality index of artificial soil[J]. Soil&Tillage Research, 2018,184:11-23.
    [25]FIERER N. Embracing the unknown:disentangling the complexities of the soil microbiome[J]. Nature Reviews Microbiology, 2017, 15(10):579-590.
    [26]赵政,陈巍,王欢,等.木霉微生物肥与减量化肥配施对番茄产量、品质及土壤肥力的影响[J].土壤学报,2018,55(5):1243-1253.
    [27]伍福琳,陈丽,易廷辉,等.重庆市农地重金属基线值的厘定及其积累特征分析[J].环境科学,2018,39(11):5116-5126.
    [28]HAYAT RIFAT, ALI SAFDAR, AMARA UMMAY, et al. Soil beneficial bacteria and their role in plant growth promotion:a review[J]. Annals of Microbiology, 2010, 60(4):579-598.
    [29]肖武,隋涛,王鑫,等.巢湖流域典型农田土壤重金属污染评价与地理探测分析[J].农业机械学报,2018,49(7):144-152.
    [30]ZHAO XINGQING, HUANG JIAN, LU JIN, et al. Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine[J]. Ecotoxicology and Environmental Safety,2019, 170:218-226.
    [31]PULIDO MANUEL, SCHNABEL SUSANNE, LAVADO CONTADOR JOAQUIN FRANCISCO, et al. The impact of heavy grazing on soil quality and pasture production in rangelands of SW Spain[J]. Land Degradation&Development, 2018, 29(2):219-230.
    [32]孙立博,余新晓,陈丽华,等.坝上高原杨树人工林的枯落物及土壤水源涵养功能退化[J].水土保持学报,2019,33(1):104-110.
    [33]刘意章,肖唐付,熊燕,等.西南高镉地质背景区农田土壤与农作物的重金属富集特征[J].环境科学,2019(6):2877-2884.
    [34]ALEJANDRO IOCOLI GASTON, CELINA ZABALOY MARIA, PASDEVICELLI GONZALO, et al. Use of biogas digestates obtained by anaerobic digestion and co-digestion as fertilizers:characterization, soil biological activity and growth dynamic of Lactuca sativa L[J]. Science of The Total Environment, 2019, 647:11-19.
    [35]BEATTIE RACHELLE E, HENKE WYATT, CAMPA MARIA F, et al. Variation in microbial community structure correlates with heavy-metal contamination in soils decades after mining ceased[J]. Soil Biology&Biochemistry,2018,126:57-63.
    [36]HEMMAT-JOU M H, SAFARI-SINEGANI A A, MIRZAIEASL A, et al. Analysis of microbial communities in heavy metalscontaminated soils using the metagenomic approach[J].Ecotoxicology, 2018,27(9):1281-1291.
    [37]COVELO E F, VEGA F A, ANDRADE M L. Simultaneous sorption and desorption of Cd, Cr, Cu, Ni, Pb, and Zn in acid soils:I. selectivity sequences[J]. Journal of Hazardous Materials, 2007,147(3):852-861.
    [38]HUUHIEUHO,SWENNENRUDY,CAPPUYNS VALERIE, et al. Potential release of selected trace elements(As, Cd, Cu, Mn, Pb and Zn)from sediments in Cam Rivermouth(Vietnam)under influence of pH and oxidation[J].Science of The Total Environment, 2012, 435:487-498.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700