用户名: 密码: 验证码:
江苏沿海近地层风阵性及台风对其影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Wind Turbulence of the Near-surface Layer of Jiangsu Coastal Area and Its Response to Typhoon
  • 作者:陈燕 ; 张宁
  • 英文作者:Chen Yan;Zhang Ning;Jangsu Provincial Climate Center;School of Atmospheric Sciences,Nanjing University;
  • 关键词:大气边界层 ; 湍流强度 ; 阵风系数
  • 英文关键词:atmospheric boundary layer;;turbulence intensity;;gust factor
  • 中文刊名:应用气象学报
  • 英文刊名:Journal of Applied Meteorological Science
  • 机构:江苏省气候中心;南京大学大气科学学院;
  • 出版日期:2019-03-15
  • 出版单位:应用气象学报
  • 年:2019
  • 期:02
  • 基金:国家重点基础研究发展计划(2016YFA0600303);; 国家自然科学基金项目(41675008,41305023);; 江苏省自然科学基金项目(BK2012493)
  • 语种:中文;
  • 页:51-64
  • 页数:14
  • CN:11-2690/P
  • ISSN:1001-7313
  • 分类号:P461
摘要
为了研究风阵性特征,尤其是在受台风影响时湍流特征对安全开发利用风能资源的影响,利用江苏沿海5座测风塔2009年6月—2012年11月的梯度风观测数据,分析了近地层风阵性基本特征,并筛选了7个对江苏产生较大影响的台风,包括罕见的正面登陆台风达维(1210),分析台风影响下风阵性特征。研究发现:江苏沿海地区低层的风脉动性比高层强,10 m高度的年平均阵风系数和湍流强度分别为1. 50和0. 20;海陆分布明显影响风阵性,离岸风的湍流强度明显大于向岸风;当风速等级小于6级时,风阵性随风速增大而一致性减小,之后则稳定少变;在台风中心附近,受风速、风向快速多变的影响,湍流强度和阵风系数均远大于台风外围和没有台风影响的情况,湍流强度和阵风系数在30~50 m高度之间增加,在6~7级风时出现风阵性的局部峰值区。
        In order to study the influence of wind turbulence characteristics on the rational and safe development and utilization of wind energy resources, long-term wind gradient observations are carried out in Jiangsu with five wind towers along the beach. Based on the wind speed and wind direction observations for 42 consecutive months from June 2009 to November 2012, temporal and spatial variation characteristics of the surface layer wind gust factor and turbulence intensity are analyzed. Variation characteristics of gust factor and turbulence intensity with wind speed, the influence of land and sea distribution on gust factor and turbulence intensity are then discussed. Seven typhoons that have great impacts on Jiangsu are selected, including the rare typhoon Damrey in 2012 that landed in Jiangsu, and the typhoon's influence on the wind is discussed. Results show that the gust factor and turbulence intensity are strong at the height of 10 meters,in the coastal areas of Jiangsu. The annual average gust factor of 10 m and 70 m heights in the coastal areas of Jiangsu are 1. 50 and 1. 24; the turbulence intensities are 0. 20 and 0. 11, respectively. The frequency distribution of gust factor and turbulence intensity is unimodal. At lower observation heights, the frequency distribution is wider, the peak is lower, and the peak is biased toward the high value area. The influence of sea and land distribution is obvious. The turbulence intensity of offshore wind is significantly greater than that of onshore wind. The wind speed has a significant impact on gust factor and turbulence intensity, which decrease with the increase of wind speed. When a wind greater than strong breeze happens,the gust factor and turbulence intensity are basically stable and less variable. Near the typhoon center, the wind speed has a bimodal change of increasing-subtracting-increasing, and the wind direction changes rapidly in a short time. The turbulence intensity at 10 m and 70 m heights are 0. 25 and 0. 14, the gust factor at 10 m and 70 m heights are 1. 65 and 1. 33, much larger than the value around typhoon and without typhoon. During the passage of the typhoon center, the turbulence intensity and gust factor do not decrease with height and they increase between 30 m and 50 m. When the wind speed increases, the turbulence intensity and gust factor decrease overall, but local peaks may occur when the wind is strong breeze to moderate gale while the typhoon center passes, threatening the safety of the turbine.
引文
[1] Powell M D, Vickery P J, Reinhold T A. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature,2003,422:279-283.
    [2] Kogaki T,Matsumiya H,Abe H,et al. Wind characteristics and models for wind turbine design in Japan. Journal of Environment and Engineering,2009,4(3):467-478.
    [3]麻素红,张进,沈学顺,等.2016年GRAPES_TYM改进及对台风预报影响.应用气象学报,2018,29(3):257-269.
    [4]黄先香,俞小鼎,炎利军,等.广东两次台风龙卷的环境背景和雷达回波对比.应用气象学报,2018,29(1):70-83.
    [5]陈雯超,宋丽莉,王志春,等.不同天气条件下脉冲激光风廓线仪测风性能.应用气象学报,2017,28(3):327 339.
    [6]高志球,王介民,马耀民,等.不同下垫面的粗糙度和中性曳力系数研究.高原气象,2000,19(1):17-24.
    [7]包能胜,刘军峰,倪维斗,等.新疆达坂城风电场风能资源特性分析.太阳能学报,2006,27(11):1073-1077.
    [8]王丙兰,胡非,程雪玲,等.边界层局地相似理论在草原下垫面的适用性检验.高原气象,2012,31(1):28-37.
    [9]薛桁,朱瑞兆,冯守忠,等.我国北部草原地区近地层平均风特性分析.太阳能学报,2002,13(3):232-238.
    [10]郅伦海,李秋胜,胡非.城市地区近地强风特性实测研究.湖南大学学报(自然科学版),2009,36:8-12.
    [11] Zhao W,Zhang N,Sun J,et al. Evaluation and parameter-sensitivity study of a single-layer urban canopy model(SLUCM)with measurements in Nanjing, China. Journal of Hydrometeorology,2014,15(3):1078-1090.
    [12]杨璐,韩丰,陈明轩,等.基于支持向量机的雷暴大风识别方法.应用气象学报,2018,29(6):680-689.
    [13] Yao Zengquan,Li Zhibian. The Characteristics of turbulence and dispersion in surface layer of coastal region. Journal of Hydrodynamics,1992,3:67-78.
    [14]黄菲,马应生,黄健.春季华南沿海海-气边界层动力参数的观测研究.中国海洋大学学报,2011,41(7/8):1-8.
    [15]张翔,李云波,张学宏,等.大连海域近海面湍流结构及谱特征.海洋通报,2012,31(1):9-14.
    [16]高晓梅,俞小鼎,王令军,等.山东半岛两次海风锋引起的强对流天气对比.应用气象学报,2018,29(2):245-256.
    [17] Xu Xiangchun, Xin Jiwu, Liang Guofeng,et al. Observation and analysis of sea surface wind over the Qiongzhou Strait.Journal of Tropical Meteorology,2010,16(4):402-408.
    [18]宋丽莉,毛慧琴,汤海燕,等.广东沿海近地层大风特性的观测分析.热带气象学报,2004,20(6):731-736.
    [19]蒋迪,黄菲,黄建.华南海岸带近地层湍流参数特征观测研究.中国海洋大学学报,2013,43(12):7-15.
    [20]高会旺,顾明,王仁磊,等.北黄海海域大气湍流强度特征及风速标准差相似性分析.中国海洋大学学报,2009,39(4):563-568.
    [21]段亚鹏,王东海,刘英.“东方之星”翻沉事件强对流天气分析及数值模拟.应用气象学报,2017,28(6):666-677.
    [22]孙燕,吴海英,沈树勤,等.冬春季江苏沿海大风的特征.南京气象学院学报,2007,30(5):699-704.
    [23] Chen Lianshou,Luo Zhexian. Some relations between asymmetric structure and motion of typhoons. Acta Meteor Sinica,1995,9(4):412-419.
    [24]张秀芝,黄秀芬,李江龙,等.一百多年来影响黄渤海热带气旋天气气候分析.海洋预报,1997,14(4):11-21.
    [25]程正泉,林良勋,杨国杰,等.超强台风威马逊快速增强及大尺度环流特征.应用气象学报,2017,28(3):318-326.
    [26] Cao SY,Tamura Y,Kikuchi N,et al. Wind characteristics of a strong typhoon. Journal of Wind Engineering and Industry Aerodynamics,2009,97:11-21.
    [27]张光智,徐祥德,王继志,等.采用外场观测试验资料对登陆台风“黄蜂”的风场及湍流特征的观测研究.应用气象学报,2004,15(增刊Ⅰ):110-115.
    [28]宋丽莉,毛慧琴,黄浩辉,等.登陆台风近地层湍流特征观测分析.气象学报,2005,63(6):915-921.
    [29]黄世成,周嘉陵,王咏青,等.两次台风过程近地层湍流度和阵风因子分析.气象科学,2009,29(4):454-460.
    [30]周福,蒋璐璐,涂小萍,等.浙江省几种灾害性大风近地面阵风系数特征.应用气象学报,2017,28(1):119-128.
    [31]张容焱,张秀芝.徐宗焕,等.台风影响下的正常湍流模型(NTM)设计.太阳能学报,2014,35(6):1075-1079.
    [32] MakinVK. A note on the drag of the sea surface at hurricane winds. Bound Layer Meteor,2005,115(1):16 9-176.
    [33] Wang B L,Hu F, Cheng X L. Wind gust and turbulence statistics of typhoon in south China. Acta Meteor Sinica,2010,1:113-127.
    [34]王志春,植石群,丁凌云.强台风纳沙[1117)近地层风特性观测分析.应用气象学报,2013,24(5):595-605.
    [35]万定祥,陈宁,彭军,等.ZQZ-TF型风向传感器电路剖析及维修方法.气象科技,2015,13(1):168-171.
    [36]吴增茂,孙士才.近海工程环境应用中各种风资料的平均时间分析.海岸工程,1995,14(3):8-12.
    [37]董双林.中国的阵风极值及其统计研究.气象学报,2001,59(3):327-333.
    [38]中国气象局.地面气象观测规范.北京:气象出版社,2003.
    [39]陈雯超,宋丽莉,植石群,等.不同下垫面的热带气旋强风阵风系数研究.中国科技(技术科学),2011,41(11):1449-1459.
    [40]张容焱,张秀芝,杨校生,等.台风莫拉克(0908)影响期间近地层风特征.应用气象学报,2012,23(2):184-194.
    [41]许向春,辛吉武,邢旭煌,等.琼州海峡南岸近地面层大风观测分析.热带气象学报,2013,29(3):481-488.
    [42]李鸿秀,朱瑞兆,王蕊,等.不同地形风电场湍流强度日变化和年变化分析.太阳能学报,2014,35(11):2327-2333.
    [43]许向春,辛吉武,梁国锋,等.琼州海峡海面风场特征的观测分析.热带气象学报,2011,27(1):118-124.
    [44]中国气象局.热带气旋年鉴2009.北京:气象出版社,2011.
    [45]中国气象局.热带气旋年鉴2010.北京:气象出版社,2012.
    [46]中国气象局.热带气旋年鉴2011.北京:气象出版社,2013.
    [47]中国气象局.热带气旋年鉴2012.北京:气象出版社,2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700