用户名: 密码: 验证码:
秸秆生物质炭对土壤结构体与活性碳分布、转化酶动力学参数及小麦生长的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of biochar application on the distribution of soil aggregates and active organic carbon, kinetic parameters of soil invertase, and wheat growth
  • 作者:姬强 ; 马媛媛 ; 刘永刚 ; 王锐 ; 孙权
  • 英文作者:JI Qiang;MA Yuanyuan;LIU Yonggang;WANG Rui;SUN Quan;School of Agriculture, Ningxia University;Ningxia Rural Science and Technology Development Center;
  • 关键词:生物质炭 ; 土壤团聚体 ; 有机碳 ; 土壤转化酶活性
  • 英文关键词:biochar;;soil aggregates;;organic carbon;;soil invertase activity
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:宁夏大学农学院;宁夏农村科技发展中心;
  • 出版日期:2019-04-01 09:13
  • 出版单位:生态学报
  • 年:2019
  • 期:12
  • 基金:宁夏自然科学基金项目(2018AAC03018);; 宁夏重点研发计划项目(2017BN05);宁夏重点研发计划项目(2018BBF02004)
  • 语种:中文;
  • 页:158-167
  • 页数:10
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:S152;S153.6;S154;S512.1
摘要
为探明生物质炭输入土壤后与水稳性团聚体的作用机理,及对土壤活性碳库、微生物活性、作物生长的促进作用。以生物质炭和秸秆碳为外源碳材料,两者等碳量添加条件下,在小麦不同生育期采用湿筛法、电镜扫描、酶动力学方程等方法,测定土壤结构、酶活性、活性有机碳、及小麦产量等指标的响应情况。结果表明:生物质炭添加下,土壤>0.25 mm大颗粒团聚体显著增加了16.9%—45.8%;土壤结构体分布以土壤大颗粒团聚体为主,含量约为小颗粒团聚体的2倍。生物质炭少量或适量添加(0.8%或2.4%),土壤微生物量碳增加了9.7%—33.6%,溶解性有机碳降低了12.6%—27.5%;而过量添加下(8%),则呈现正好相反的规律。生物质炭输入下,转化酶动力学参数Km、Vmax、k分别下降了17.3%、17.0%、16.1%。生物质炭适量添加下,小麦产量增加了14.9%—19.1%;秸秆3%和10%添加水平下,小麦产量则下降了37.3%和90.1%。整体而言,生物质炭通过增加>0.25 mm大颗粒团聚体的形成及土壤转化酶的活性来促进土壤结构和作物的生长的改善,且生物质炭在2.4%水平下的生物质炭添加改善作用最为突出,有助于研究区域过剩秸秆资源的资源化利用。
        This study was conducted to evaluate the effects of biochar(BC) application on the active organic carbon and microbial activity in the soil, and crop growth, as well as the action mechanism between biochar and water-stable aggregates(WSA) in the soil. Biochar and straw were added at 1%, 3%, and 10% in straw treatments(Str_(1.0), Str_(3.0), and Str_(10.0), respectively) and 0.8%, 2.4%, and 8% in biochar treatments(BC_(0.8), BC_(2.4), and BC_(8.0), respectively). With biochar and straw applied at equal C rates, the wet sieving method, scanning electron microscope, and kinetic model equation were used to investigate the responses of enzymatic activity, soil structure, active organic carbon, and wheat yield. The results indicated that the proportion of macro-aggregates(> 0.25 mm) was significantly increased by 16.9%—45.8% in biochar treatments, while the proportion of macro-aggregates was double that of micro-aggregates in the treatment where straw was applied in excess. Soil microbial biomass C content was increased by 9.7%—33.6%. However, the dissolved organic C content was decreased by 12.6%—27.5% in BC_(0.8) and BC_(2.4), while the reverse was observed in BC_(8.0). The kinetic parameters of the enzyme(michaelis constant, maximum enzyme velocity, and velocity constant) were decreased by 17.3%, 17.0%, and 16.1% in biochar treatments, respectively. Compared with the control, wheat yields were increased by 14.9%—19.1% in BC_(0.8) and BC_(2.4), while it decreased by 37.3% and 90.1% in Str_3 and Str_(10), respectively. In general, soil structure and wheat growth were promoted by increasing the formation of soil WSA fractions that were >0.25 mm and invertase activity. Biochar applied at the rate of 2.4% was beneficial for improving the soil structure and crop growth, and is effective for the utilization of excess plant residues in the study area.
引文
[1] 高利伟,马林,张卫峰,王方浩,马文奇,张福锁.中国作物秸秆养分资源数量估算及其利用状况.农业工程学报,2009,25(7):173-179.
    [2] 朱立志.秸秆综合利用与秸秆产业发展.中国科学院院刊,2017,32(10):1125-1132.
    [3] 包建财,郁继华,冯致,陈佰鸿,雷成,杨娟.西部七省区作物秸秆资源分布及利用现状.应用生态学报,2014,25(1):181-187.
    [4] 李英臣,侯翠翠,李勇,过治军.免耕和秸秆覆盖对农田土壤温室气体排放的影响.生态环境学报,2014,23(6):1076-1083.
    [5] 刘杏认,张星,张晴雯,李贵春,张庆忠.施用生物炭和秸秆还田对华北农田CO2、N2O排放的影响.生态学报,2017,37(20):6700-6711.
    [6] 王幸,吴存祥,齐玉军,徐泽俊,王宗标,韩天富.麦秸处理和播种方式对夏大豆农艺性状及土壤物理性状的影响.中国农业科学,2016,49(8):1453-1465.
    [7] Wardle D A,Nilsson M C,Zackrisson O.Fire-derived charcoal causes loss of forest humus.Science,2008,320(5876):629-629.
    [8] Schmidt M W I,Noack A G.Black carbon in soils and sediments:analysis,distribution,implications,and current challenges.Global Biogeochemical Cycles,2000,14(3):777-793.
    [9] Lehmann J,Rillig M C,Thies J,Masiello C A,Hockaday W C,Crowley D.Biochar effects on soil biota - A review.Soil Biology and Biochemistry,2011,43(9):1812-1836.
    [10] Rillig M C,Mummey D L.Mycorrhizas and soil structure.New Phytologist,2006,171(1):41-53.
    [11] Atkinson C J,Fitzgerald J D,Hipps N A.Potential mechanisms for achieving agricultural bene?ts from biochar application to temperate soils:a review.Plant and Soil,2010,337(1/2):1-18.
    [12] 尹云锋,高人,马红亮,杨玉盛,李淑香,刘燕萍.稻草及其制备的生物质炭对土壤团聚体有机碳的影响.土壤学报,2013,50(5):909-914.
    [13] Lancashire P D,Bleiholder H,van den Boom T,Langelüddeke P,Stauss R,Weber E,Witzenberger A.A uniform decimal code for growth stages of crops and weeds.Annals of Applied Biology,1991,119(3):561-601.
    [14] Six J,Feller C,Denef K,Ogle S M,de Moraes Sa J C,Albrecht A.Soil organic matter,biota and aggregation in temperate and tropical soils - effects of no-tillage.Agronomie,2002,22(7/8):755-775.
    [15] Ghani A,Dexter M,Perrott K W.Hot-water extractable carbon in soils:a sensitive measurement for determining impacts of fertilisation,grazing and cultivation.Soil Biology and Biochemistry,2003,35(9):1231-1243.
    [16] Ji Q,Zhao S X,Li Z H,Ma Y Y,Wang X D.Effects of biochar-straw on soil aggregation,organic carbon distribution,and wheat growth.Agronomy Journal,2016,108(5):2129-2136.
    [17] 刘玉学,刘微,吴伟祥,钟哲科,陈英旭.土壤生物质炭环境行为与环境效应.应用生态学报,2008,20(4):977-982.
    [18] 王洪媛,盖霞普,翟丽梅,刘宏斌.生物炭对土壤氮循环的影响研究进展.生态学报,2016,36(19):5998-6011.
    [19] Chinchalikar A J,Aswal V K,Kohlbrecher J,Wagh A G.Evolution of structure and interaction during aggregation of silica nanoparticles in aqueous electrolyte solution.Chemical Physics Letters,2012,542:74-80.
    [20] Lin Y,Munroe P,Joseph S,Kimber S,van Zwieten L.Nanoscale organo-mineral reactions of biochars in ferrosol:an investigation using microscopy.Plant and Soil,2012,357(1/2):369-380.
    [21] Blanco-Canqui H,Lal R.Soil structure and organic carbon relationships following 10 years of wheat straw management in no-till.Soil and Tillage Research,2007,95(1/2):240-254.
    [22] Annabi M,Houot S,Francou C,Poitrenaud M,Le Bissonnais Y.Soil aggregate stability improvement with urban composts of different maturities.Soil Science Society of America Journal,2007,71(2):413-423.
    [23] Demisie W,Liu Z Y,Zhang M K.Effect of biochar on carbon fractions and enzyme activity of red soil.CATENA,2014,121:214-221.
    [24] Kindler R,Siemens J,Kaiser K,Walmsley D C,Bernhofer C,Buchmann N,Cellier P,Eugster W,Gleixner G,Grünwald T,Heim A,Ibrom A,Jones S K,Jones M,Klumpp K,Kutsch W,Larsen K S,Lehuger S,Loubet B,McKenzie R,Moors E,Osborne B,Pilegaard K,Rebmann C,Saunders M,Schmidt M W I,Schrumpf M,Seyfferth J,Skiba U,Zeeman M J,Kaupenjohann M.Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance.Global Change Biology,2011,17(2):1167-1185.
    [25] Huang J Y,Song C C.Effects of land use on soil water soluble organic C and microbial biomass C concentrations in the Sanjiang Plain in northeast China.Acta Agricultur? Scandinavica,Section B—Soil & plant Science,2010,60(2):182-188.
    [26] Abel S,Peters A,Trinks S,Schonsky H,Facklam M,Wessolek G.Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil.Geoderma,2013,202-203:183-191.
    [27] 王法宏,任德昌,王旭清,曹宏鑫,余松烈,于振文.施肥对小麦根系活性、延缓旗叶衰老及产量的效应.麦类作物学报,2001,21(3):51-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700