用户名: 密码: 验证码:
基于多源遥感影像的洞庭湖地形提取方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A new method for extracting lake bathymetry using multi-temporal and multi-source remote sensing imagery:A case study of Dongting Lake
  • 作者:隆院男 ; 闫世雄 ; 蒋昌波 ; 吴长山 ; 李志威 ; 唐蓉
  • 英文作者:LONG Yuannan;YAN Shixiong;JIANG Changbo;WU Changshan;LI Zhiwei;TANG Rong;School of Hydraulic Engineering, Changsha University of Science & Technology;Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province;Department of Geography, University of Wisconsin-Milwaukee;
  • 关键词:湖底地形 ; 水位 ; 遥感影像 ; 湖泊边界 ; 水位反演 ; 洞庭湖
  • 英文关键词:lake bathymetry;;water level;;remote sensing imagery;;lake boundary;;water retrieval;;Dongting Lake
  • 中文刊名:地理学报
  • 英文刊名:Acta Geographica Sinica
  • 机构:长沙理工大学水利工程学院;洞庭湖水环境治理与生态修复湖南省重点实验室;美国威斯康星大学密尔沃基分校地理系;
  • 出版日期:2019-07-22 09:28
  • 出版单位:地理学报
  • 年:2019
  • 期:07
  • 基金:国家自然科学基金项目(91647118,51809020);; 湖南省自然科学基金项目(2016JJ3011,2018JJ3535)~~
  • 语种:中文;
  • 页:191-205
  • 页数:15
  • CN:11-1856/P
  • ISSN:0375-5444
  • 分类号:TP751;P332;P217
摘要
湖底地形数据是湖泊流域规划与治理、湖区冲淤变化研究、水资源利用和生态环境保护的重要基础。但传统的大型湖泊湖底地形数据获取手段耗时长、投入大,因此,有必要研究一种基于遥感影像快速获取湖底地形数据的方法。本文以洞庭湖为研究对象,采用Landsat和MODIS系列遥感影像提取湖区边界,基于趋势面分析法和克里金插值法,反演湖区边界各点对应的水位,将带有水位信息的边界点作为高程点实现湖底地形反演,进一步用实测湖底地形验证反演方法的可靠性。研究结果表明,克里金插值法水位反演效果较好,交叉验证的误差标准平均值在0.2 m以内,水位样本点分布较多处,基于克里金法的地形反演绝对误差在1 m以内。本文利用湖泊淹没区域变化的特点快速获取湖底地形,对湖区演变分析、综合治理与保护等具有重要意义。
        Lake bathymetry can provide abundant information for basin planning and governance, watershed erosion and siltation management, water resource utilization, as well as environmental protection. In particular, lake bathymetry is essential for lake development and conservation, and is also closely related to sediment deposition and removal. A number of sounding techniques, such as single-beam sonar sounding, multi-beam sonar sounding, and unmanned ship sounding, have been applied to extract underwater topography of lakes. These techniques, albeit with high measurement accuracy, are time-consuming and costly. Therefore,it is of great need to develop a simple and cost-effective method. To reach this goal, recent advances of remote sensing technologies provide an alternative means of accurately measuring lake bathymetry information. Taking Dongting Lake as the study area, this paper estimated the lake bathymetry through extracting the boundaries of lake areas using multi-temporal Landsat and MODIS image series. In particular, the water level corresponding to each reference point of the lake boundary is retrieved based on trend surface analysis and kriging interpolation technology. Then the water levels of these points are regarded as the elevation points to retrieve the landform of the lakebed of the Dongting Lake. The reliability and accuracy of the developed methods were assessed through the comparsion with the actual measurements.Results indicate that the kriging interpolation technology performs well, with the average of cross-validated error target less than 0.2 meter, and the retrieval error of lake boundary with more reference points less than 1 meter. This paper suggests that an improved method for accurately and rapidly extracting lake bathymetry information can be achieved through examining the changes of water levels. This method might be of great significance for further study on lake evolution, lake development planning, and water ecological protection.
引文
[1] Feng L, Hu C M, Chen X L, et al. MODIS observations of the bottom topography and its inter-annual variability of Poyang Lake. Remote Sensing of Environment, 2011, 115(10):2729-2741.
    [2] Wang C K, Philpot W D. Using airborne bathymetric LIDAR to detect bottom type variation in shallow waters. Remote Sensing of Environment, 2007, 106(1):123-135.
    [3] Du Tao, Xiong Lihua, Yi Fanghui, et al. Relation of the water area of Dongting Lake to the water levels of hydrological stations based on MODIS images. Resources and Environment in the Yangtze Basin, 2012, 21(6):756-765.[杜涛,熊立华,易放辉,等.基于MODIS数据的洞庭湖水体面积与多站点水位相关关系研究.长江流域资源与环境, 2012, 21(6):756-765.]
    [4] Zhu Lingling, Chen Jianchi, Yuan Jing, et al. Sediment erosion and deposition in two lakes connected with the middle Yangtze River and the impact of Three Gorges Reservoir. Advances in Water Science, 2014, 25(3):348-357.[朱玲玲,陈剑池,袁晶,等.洞庭湖和鄱阳湖泥沙冲淤特征及三峡水库对其影响.水科学进展, 2014, 25(3):348-357.]
    [5] Li Jingbao, Wang Kelin, Qin Jianxin, et al. The evolution of annual runoff and sediment in the Dongting Lake and their driving forces. Acta Geographica Sinica, 2005, 60(3):503-510.[李景保,王克林,秦建新,等.洞庭湖年径流泥沙的演变特征及其动因.地理学报, 2005, 60(3):503-510.]
    [6] Li Jingbao, Yin Hui, Lu Chengzhi, et al. Impact of sedimentation on Doingting Lake. Acta Geographica Sinica, 2008, 63(5):514-523.[李景保,尹辉,卢承志,等.洞庭湖区的泥沙淤积效应.地理学报, 2008, 63(5):514-523.]
    [7] Tang Guoan. Progress of DEM and digital terrain analysis in China. Acta Geographica Sinica, 2014, 69(9):1305-1325.[汤国安.我国数字高程模型与数字地形分析研究进展.地理学报, 2014, 69(9):1305-1325.]
    [8] Jiang Feng, Qi Shuhua, Liao Fuqiang, et al. Hydrological and sediment effects from sand mining in Poyang Lake during2001-2010. Acta Geographica Sinica, 2015, 70(5):837-845.[江丰,齐述华,廖富强,等. 2001-2010年鄱阳湖采砂规模及其水文泥沙效应.地理学报, 2015, 70(5):837-845.]
    [9] Carbonneau P E, Lane S N, Bergeron N. Feature based image processing methods applied to bathymetric measurements from airborne remote sensing in fluvial environments. Earth Surface Processes&Landforms, 2006, 31(11):1413-1423.
    [10] Gao J. Bathymetric mapping by means of remote sensing:methods, accuracy and limitations. Progress in Physical Geography, 2009, 33(1):103-116.
    [11] Liu Shudong, Tian Junfeng. Development of bathyorographic survey technique. Port&Waterway Engineering, 2008(1):11-15.[刘树东,田俊峰.水下地形测量技术发展述评.水运工程, 2008(1):11-15.]
    [12] Li Changyou, Sun Biao, Gao Zhanyi, et al. Retrieval model of water depth in Hulun Lake using multi-spectral remote sensing. Journal of Hydraulic Engineering, 2011, 42(12):1423-1431.[李畅游,孙标,高占义,等.呼伦湖多波段遥感水深反演模型研究.水利学报, 2011, 42(12):1423-1431.]
    [13] Shen Xin, Ouyang Zhiyun, Leeuw J. Constructing a DEM of Baiyang Lake Area from a series of Landsat images.Geography and Geo-Information Science, 2005, 21(2):16-19.[沈欣,欧阳志云, Jande LEEUW.利用多时相Landsat影像生成白洋淀湖底DEM的研究.地理与地理信息科学, 2005, 21(2):16-19.]
    [14] Liu Dong, Li Yan. The calculation of area and storage of Poyang Lake based on remote sensing technology. Remote Sensing Information, 2012(2):57-61.[刘东,李艳.基于遥感技术的鄱阳湖面积库容估算.遥感信息, 2012(2):57-61.]
    [15] Duan Z, Bastiaanssen W G M. Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sensing of Environment, 2013, 134(5):403-416.
    [16] Zhu Changming, Zhang Xin, Lu Ming, et al. Lake storage change automatic detection by multi-source remote sensing without underwater terrain data. Acta Geodaetica et Cartographica Sinica, 2015, 44(3):309-315.[朱长明,张新,路明,等.湖盆数据未知的湖泊动态库容遥感监测方法.测绘学报, 2015, 44(3):309-315.]
    [17] Yin Hui, Yang Bo, Jiang Zhongcheng, et al. Mutual effects between morphological characteristics and variations of flowsediment process of Dongting Lake during 1951-2009. Geographical Research, 2012, 31(3):471-483.[尹辉,杨波,蒋忠诚,等.近60年洞庭湖泊形态与水沙过程的互动响应.地理研究, 2012, 31(3):471-483.]
    [18] Jiang Jiahu, Huang Qun. Analysis of the lake basin change and the rushing-silting features in the past decades of Doingting Lake. Journal of Lake Sciences, 2004, 16(3):209-214.[姜加虎,黄群.洞庭湖近几十年来湖盆变化及冲淤特征.湖泊科学, 2004, 16(3):209-214.]
    [19] Jiang H, Feng M, Zhu Y Q, et al. An automated method for extracting rivers and lakes from landsat imagery. Remote Sensing, 2014, 6(6):5067-5089.
    [20] Gao B C. NDWI:A normalized difference water index for remote sensing of vegetation liquid water from space.Remote Sensing of Environment, 1996, 58(3):257-266.
    [21] Xu Hanqiu. A study on information extraction of water body with the modified normalized difference water Index(MNDWI). Journal of Remote Sensing, 2005, 9(5):589-595.[徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究.遥感学报, 2005, 9(5):589-595.]
    [22] Wang Dandan. Spatial statistic analysis and its application in agricultural land classification[D]. Xi'an:Chang'an University, 2008.[王丹丹.空间统计分析及其在农用地分等中的应用[D].西安:长安大学, 2008.]
    [23] Chen Ke, Li Zhengpin, Yang Linbo, et al. Underwater trend surface analysis based on geostatistics and kriging methodology. Geomatics&Spatial Information Technology, 2016(7):82-84.[陈科,李正品,杨林波,等.基于地统计学和克里金法的水下趋势面分析.测绘与空间地理信息, 2016(7):82-84]
    [24] Tan Xiaoming. Study on characteristics of water level variation in Dongting Lake. Hunan Hydro&Power, 2002(2):25-26.[谭晓明.洞庭湖水位变化特性.湖南水利水电, 2002(2):25-26.]
    [25] Sun Zhaohua, Li Qi, Yan Xin, et al. Analysis of the critical relationship between the water levels of Dongting Lake and Chenglingji station. Advances in Water Science, 2017, 28(4):496-506.[孙昭华,李奇,严鑫,等.洞庭湖区与城陵矶水位关联性的临界特征分析.水科学进展, 2017, 28(4):496-506.]
    [26] Liu Zhilong, Yu Mukui, Ma Yue, et al. A trend surface analysis of geographic variation in the traits of seeds and seedlings from different Quercus acutissima provenances. Acta Ecologica Sinica, 2011, 31(22):6796-6804.[刘志龙,虞木奎,马跃,等.不同种源麻栎种子和苗木性状地理变异趋势面分析.生态学报, 2011, 31(22):6796-6804.]
    [27] Lu Tingting, Lin Min. Models comparison for water interpolation based on kriging method. Science Technology and Engineering, 2015, 15(4):135-139.[陆婷婷,林敏.基于克里金的水深插值模型比较.科学技术与工程, 2015, 15(4):135-139.]
    [28] Xu Tianxian, Wang Yukuan, Fu Bin. Interpolation analysis of precipitation spatial distribution in Sichuan Province.Yangtze River, 2010, 41(10):9-12.[徐天献,王玉宽,傅斌.四川省降水空间分布的插值分析.人民长江, 2010, 41(10):9-12.]
    [29] Wang Yinghua, Zhang Xin. Analysis of spatial and temporal distribution of precipitation in Xining City. Yellow River,2012, 34(10):80-82.[王颖华,张鑫.西宁市降水量时空分布规律分析.人民黄河, 2012, 34(10):80-82.]
    [30] Yang Gongliu, Zhang Guimin, Li Shixin. Application of universal Kriging interpolation in geomagnetic map. Journal of Chinese Inertial Technology, 2008, 16(2):162-166.[杨功流,张桂敏,李士心.泛克里金插值法在地磁图中的应用.中国惯性技术学报, 2008, 16(2):162-166.]
    [31] Li Junxiao, Li Chaokui, Yin Zhihui. ArcGIS based kriging interpolation method and its application. Bulletin of Surveying and Mapping, 2013(9):87-90.[李俊晓,李朝奎,殷智慧.基于ArcGIS的克里金插值方法及其应用.测绘通报, 2013(9):87-90.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700